39,449 research outputs found

    Soft bilateral filtering shadows using multiple image-based algorithms

    Get PDF
    This study introduces Soft Bilateral Filtering Shadows method of dynamic scenes, which uses multi-matrices of the light sample points due to lack realism in soft shadows generation in real time. While geometry-based shadow algorithm requires one pass per polygon for rendering shadow that requires time-consuming, the adopted shadow map algorithm needs a single rendering pass for each sample point of the light source to generate shadow at low cost. This method renders a complex scenes and accurately eliminating the inherent deficiencies in shadow maps. In order to compute shadow maps, view matrices were used for each sample point of the extended light source. Then penumbra region was used for interpolation based on bilateral filtering to create the soft shadows. They depend on multiple shadow maps which provide antialiasing shadow maps. The method uses fragment shader for rendering multiple shadow maps with penumbra and umbra regions. The main contribution of this article is introducing interpolation bilaterally of image-based shadows. This method makes the most effect of the computation significantly appear at the edges of the penumbra region. Furthermore, the filtering allows to obtain on the soft shadow marvelously at the lowest number possible of the light sample points. The generated soft shadows have good performance and high quality therefore, they are suitable for interactive applications. © 2016 Springer Science+Business Media New Yor

    Master of Science in Computing

    Get PDF
    thesisThis document introduces the Soft Shadow Mip-Maps technique, which consists of three methods for overcoming the fundamental limitations of filtering-oriented soft shadows. Filtering-oriented soft shadowing techniques filter shadow maps with varying filter sizes determined by desired penumbra widths. Different varieties of this approach have been commonly applied in interactive and real-time applications. Nonetheless, they share some fundamental limitations. First, soft shadow filter size is not always guaranteed to be the correct size for producing the right penumbra width based on the light source size. Second, filtering with large kernels for soft shadows requires a large number of samples, thereby increasing the cost of filtering. Stochastic approximations for filtering introduce noise and prefiltering leads to inaccuracies. Finally, calculating shadows based on a single blocker estimation can produce significantly inaccurate penumbra widths when the shadow penumbras of different blockers overlap. We discuss three methods to overcome these limitations. First, we introduce a method for computing the soft shadow filter size for a receiver with a blocker distance. Then, we present a filtering scheme based on shadow mip-maps. Mipmap-based filtering uses shadow mip-maps to efficiently generate soft shadows using a constant size filter kernel for each layer, and linear interpolation between layers. Finally, we introduce an improved blocker estimation approach. With the improved blocker estimaiton, we explore the shadow contribution of every blocker by calculating the light occluded by potential blockers. Hence, the calculated penumbra areas correspond to the blockers correctly. Finally, we discuss how to select filter kernels for filtering. These approaches successively solve issues regarding shadow penumbra width calculation apparent in prior techniques. Our result shows that we can produce correct penumbra widths, as evident in our comparisons to ray-traced soft shadows. Nonetheless, the Soft Shadow Mip-Maps technique suffers from light bleeding issues. This is because our method only calculates shadows using the geometry that is available in the shadow depth map. Therefore, the occluded geometry is not taken into consideration, which leads to light bleeding. Another limitation of our method is that using lower resolution shadow mip-map layers limits the resolution of the shadow placement. As a result, when a blocker moves slowly, its shadow follows it with discrete steps, the size of which is determined by the corresponding mip-map layer resolution

    Fifty Year Canon of Lunar Eclipses: 1986-2035

    Get PDF
    A complete catalog is presented, listing the general circumstances of every lunar eclipse from 1901 through 2100. To compliment this catalog, a set of figures illustrate the basic Moon-shadow geometry and global visibility for every lunar eclipse over the 200 year interval. Focusing in on the next fifty years, 114 detailed diagrams show the Moon's path through Earth's shadow during every eclipse, including contact times at each phase. The accompanying cylindrical projection maps of Earth show regions of hemispheric visibility for all phases. The appendices discuss eclipse geometry, eclipse frequency and recurrence, enlargement of Earth's shadow, crater timings, eclipse brightness and time determination. Finally, a simple FORTRAN program is provided which can be used to predict the occurrence and general characteristics of lunar eclipses. This work is a companion volume to NASA Reference Publication 1178: Fifty Year Canon of Solar Eclipses: 1986-2035

    Smoke and Shadows: Rendering and Light Interaction of Smoke in Real-Time Rendered Virtual Environments

    Get PDF
    Realism in computer graphics depends upon digitally representing what we see in the world with careful attention to detail, which usually requires a high degree of complexity in modelling the scene. The inevitable trade-off between realism and performance means that new techniques that aim to improve the visual fidelity of a scene must do so without compromising the real-time rendering performance. We describe and discuss a simple method for realistically casting shadows from an opaque solid object through a GPU (graphics processing unit) based particle system representing natural phenomena, such as smoke

    Holomorphic shadows in the eyes of model theory

    Full text link
    We define a subset of an almost complex manifold (M,J) to be a holomorphic shadow if it is the image of a J-holomorphic map from a compact complex manifold. Notice that a J-holomorphic curve is a holomorphic shadow, and so is a complex subvariety of a compact complex manifold. We show that under some conditions on an almost complex structure J on a manifold M, the holomorphic shadows in the Cartesian products of (M,J) form a Zariski-type structure. Checking this leads to non-trivial geometric questions and results. We then apply the work of Hrushovski and Zilber on Zariski-type structures. We also restate results of Gromov and McDuff on J-holomorphic curves in symplectic geometry in the language of shadows structures.Comment: Changed and added conten

    Shadows of CPR black holes and tests of the Kerr metric

    Get PDF
    We study the shadow of the Cardoso-Pani-Rico (CPR) black hole for different values of the black hole spin aa_*, the deformation parameters ϵ3t\epsilon_3^t and ϵ3r\epsilon_3^r, and the viewing angle ii. We find that the main impact of the deformation parameter ϵ3t\epsilon_3^t is the change of the size of the shadow, while the deformation parameter ϵ3r\epsilon_3^r affects the shape of its boundary. In general, it is impossible to test the Kerr metric, because the shadow of a Kerr black hole can be reproduced quite well by a black hole with non-vanishing ϵ3t\epsilon_3^t or ϵ3r\epsilon_3^r. Deviations from the Kerr geometry could be constrained in the presence of high quality data and in the favorable case of a black hole with high values of aa_* and ii. However, the shadows of some black holes with non-vanishing ϵ3r\epsilon_3^r present peculiar features and the possible detection of these shadows could unambiguously distinguish these objects from the standard Kerr black holes of general relativity.Comment: 10 pages, 7 figures. v2: refereed version with minor change

    On the Reconstruction of Geodesic Subspaces of RN\mathbb{R}^N

    Full text link
    We consider the topological and geometric reconstruction of a geodesic subspace of RN\mathbb{R}^N both from the \v{C}ech and Vietoris-Rips filtrations on a finite, Hausdorff-close, Euclidean sample. Our reconstruction technique leverages the intrinsic length metric induced by the geodesics on the subspace. We consider the distortion and convexity radius as our sampling parameters for a successful reconstruction. For a geodesic subspace with finite distortion and positive convexity radius, we guarantee a correct computation of its homotopy and homology groups from the sample. For geodesic subspaces of R2\mathbb{R}^2, we also devise an algorithm to output a homotopy equivalent geometric complex that has a very small Hausdorff distance to the unknown shape of interest

    Diffusion-Limited Aggregation on Curved Surfaces

    Get PDF
    We develop a general theory of transport-limited aggregation phenomena occurring on curved surfaces, based on stochastic iterated conformal maps and conformal projections to the complex plane. To illustrate the theory, we use stereographic projections to simulate diffusion-limited-aggregation (DLA) on surfaces of constant Gaussian curvature, including the sphere (K>0K>0) and pseudo-sphere (K<0K<0), which approximate "bumps" and "saddles" in smooth surfaces, respectively. Although curvature affects the global morphology of the aggregates, the fractal dimension (in the curved metric) is remarkably insensitive to curvature, as long as the particle size is much smaller than the radius of curvature. We conjecture that all aggregates grown by conformally invariant transport on curved surfaces have the same fractal dimension as DLA in the plane. Our simulations suggest, however, that the multifractal dimensions increase from hyperbolic (K0K0) geometry, which we attribute to curvature-dependent screening of tip branching.Comment: 4 pages, 3 fig
    corecore