69,891 research outputs found

    Geometry of quantum correlations in space-time

    Full text link
    The traditional formalism of non-relativistic quantum theory allows the state of a quantum system to extend across space, but only restricts it to a single instant in time, leading to distinction between theoretical treatments of spatial and temporal quantum correlations. Here we unify the geometrical description of two-point quantum correlations in space-time. Our study presents the geometry of correlations between two sequential Pauli measurements on a single qubit undergoing an arbitrary quantum channel evolution together with two-qubit spatial correlations under a common framework. We establish a symmetric structure between quantum correlations in space and time. This symmetry is broken in the presence of non-unital channels, which further reveals a set of temporal correlations that are indistinguishable from correlations found in bipartite entangled states.Comment: 5 pages, 3 figure

    Quantum Information Geometry in the Space of Measurements

    Full text link
    We introduce a new approach to evaluating entangled quantum networks using information geometry. Quantum computing is powerful because of the enhanced correlations from quantum entanglement. For example, larger entangled networks can enhance quantum key distribution (QKD). Each network we examine is an n-photon quantum state with a degree of entanglement. We analyze such a state within the space of measured data from repeated experiments made by n observers over a set of identically-prepared quantum states -- a quantum state interrogation in the space of measurements. Each observer records a 1 if their detector triggers, otherwise they record a 0. This generates a string of 1's and 0's at each detector, and each observer can define a binary random variable from this sequence. We use a well-known information geometry-based measure of distance that applies to these binary strings of measurement outcomes, and we introduce a generalization of this length to area, volume and higher-dimensional volumes. These geometric equations are defined using the familiar Shannon expression for joint and mutual entropy. We apply our approach to three distinct tripartite quantum states: the GHZ state, the W state, and a separable state P. We generalize a well-known information geometry analysis of a bipartite state to a tripartite state. This approach provides a novel way to characterize quantum states, and it may have favorable scaling with increased number of photons.Comment: 21 pages, 7 figure

    Geometric aspects of uncertainty and correlation

    Get PDF
    The fact that the metric induced on the quantum evolution submanifold of the protective Hilbert space describes the uncertainties and correlations of the operators generating the quantum-state evolution and exhibits the inherently-quantized geometry is discussed

    Loop Quantum Gravity and Quantum Information

    Full text link
    We summarize recent developments at the interface of quantum gravity and quantum information, and discuss applications to the quantum geometry of space in loop quantum gravity. In particular, we describe the notions of link entanglement, intertwiner entanglement, and boundary spin entanglement in a spin-network state. We discuss how these notions encode the gluing of quanta of space and their relevance for the reconstruction of a quantum geometry from a network of entanglement structures. We then focus on the geometric entanglement entropy of spin-network states at fixed spins, treated as a many-body system of quantum polyhedra, and discuss the hierarchy of volume-law, area-law and zero-law states. Using information theoretic bounds on the uncertainty of geometric observables and on their correlations, we identify area-law states as the corner of the Hilbert space that encodes a semiclassical geometry, and the geometric entanglement entropy as a probe of semiclassicality.Comment: 17 pages, Invited chapter for the "Handbook of Quantum Gravity" (Eds. C. Bambi, L. Modesto and I.L. Shapiro, Springer Singapore, expected in 2023

    Composite Geometric Phase for Multipartite Entangled States

    Get PDF
    When an entangled state evolves under local unitaries, the entanglement in the state remains fixed. Here we show the dynamical phase acquired by an entangled state in such a scenario can always be understood as the sum of the dynamical phases of its subsystems. In contrast, the equivalent statement for the geometric phase is not generally true unless the state is separable. For an entangled state an additional term is present, the mutual geometric phase, that measures the change the additional correlations present in the entangled state make to the geometry of the state space. For NN qubit states we find this change can be explained solely by classical correlations for states with a Schmidt decomposition and solely by quantum correlations for W states.Comment: 4 pages, 1 figure, improved presentation, results and conclusions unchanged from v1. Accepted for publication in PR

    State-space Correlations and Stabilities

    Full text link
    The state-space pair correlation functions and notion of stability of extremal and non-extremal black holes in string theory and M-theory are considered from the viewpoints of thermodynamic Ruppeiner geometry. From the perspective of intrinsic Riemannian geometry, the stability properties of these black branes are divulged from the positivity of principle minors of the space-state metric tensor. We have explicitly analyzed the state-space configurations for (i) the two and three charge extremal black holes, (ii) the four and six charge non-extremal black branes, which both arise from the string theory solutions. An extension is considered for the D6D_6-D4D_4-D2D_2-D0D_0 multi-centered black branes, fractional small black branes and two charge rotating fuzzy rings in the setup of Mathur's fuzzball configurations. The state-space pair correlations and nature of stabilities have been investigated for three charged bubbling black brane foams, and thereby the M-theory solutions are brought into the present consideration. In the case of extremal black brane configurations, we have pointed out that the ratio of diagonal space-state correlations varies as inverse square of the chosen parameters, while the off diagonal components vary as inverse of the chosen parameters. We discuss the significance of this observation for the non-extremal black brane configurations, and find similar conclusion that the state-space correlations extenuate as the chosen parameters are increased.Comment: 35 pages, Keywords: Black Hole Physics, Higher-dimensional Black Branes, State-space Correlations and Statistical Configurations. PACS numbers: 04.70.-s Physics of black holes; 04.70.Bw Classical black holes; 04.70.Dy Quantum aspects of black holes, evaporation, thermodynamics; 04.50.Gh Higher-dimensional black holes, black strings, and related object

    Quantum Correlations are Weaved by the Spinors of the Euclidean Primitives

    Get PDF
    The exceptional Lie group E_8 plays a prominent role both in mathematics and theoretical physics. It is the largest symmetry group connected to the most general possible normed division algebra, that of the non-associative real octonions, which — thanks to their non-associativity — form the only possible closed set of spinors that can parallelize the 7-sphere. By contrast, here we show how a similar 7-sphere also arises naturally from the algebraic interplay of the graded Euclidean primitives, such as points, lines, planes and volumes, characterizing the three-dimensional conformal geometry of the physical space, set within its eight-dimensional Clifford-algebraic representation. Remarkably, the resulting algebra remains associative, and allows us to understand the origins and strengths of all quantum correlations locally, in terms of the geometry of the compactified physical space, namely that of a quaternionic 3-sphere, S^3, with S^7 being the corresponding algebraic representation space. Every quantum correlation can thus be understood as a correlation among a set of points of this S^7, computed using manifestly local spinors in S^3 , thereby setting the geometrical upper bound of 2√2 on the strengths of all quantifiable correlations. We demonstrate this by first proving a comprehensive theorem about the geometrical origins of the correlations predicted by any arbitrary quantum state, and then explicitly reproducing the strong correlations predicted by the EPR-Bohm and GHZ states. The raison d'etre of strong correlations turns out to be the twist in the Hopf bundle of S^3 within S^7
    corecore