24,579 research outputs found

    Avoiding Geometry Improvement in Derivative-Free Model-Based Methods via Randomization

    Full text link
    We present a technique for model-based derivative-free optimization called \emph{basis sketching}. Basis sketching consists of taking random sketches of the Vandermonde matrix employed in constructing an interpolation model. This randomization enables weakening the general requirement in model-based derivative-free methods that interpolation sets contain a full-dimensional set of affinely independent points in every iteration. Practically, this weakening provides a theoretically justified means of avoiding potentially expensive geometry improvement steps in many model-based derivative-free methods. We demonstrate this practicality by extending the nonlinear least squares solver, \texttt{POUNDers} to a variant that employs basis sketching and we observe encouraging results on higher dimensional problems

    Manifold interpolation and model reduction

    Full text link
    One approach to parametric and adaptive model reduction is via the interpolation of orthogonal bases, subspaces or positive definite system matrices. In all these cases, the sampled inputs stem from matrix sets that feature a geometric structure and thus form so-called matrix manifolds. This work will be featured as a chapter in the upcoming Handbook on Model Order Reduction (P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W.H.A. Schilders, L.M. Silveira, eds, to appear on DE GRUYTER) and reviews the numerical treatment of the most important matrix manifolds that arise in the context of model reduction. Moreover, the principal approaches to data interpolation and Taylor-like extrapolation on matrix manifolds are outlined and complemented by algorithms in pseudo-code.Comment: 37 pages, 4 figures, featured chapter of upcoming "Handbook on Model Order Reduction

    A Method for Geometry Optimization in a Simple Model of Two-Dimensional Heat Transfer

    Full text link
    This investigation is motivated by the problem of optimal design of cooling elements in modern battery systems. We consider a simple model of two-dimensional steady-state heat conduction described by elliptic partial differential equations and involving a one-dimensional cooling element represented by a contour on which interface boundary conditions are specified. The problem consists in finding an optimal shape of the cooling element which will ensure that the solution in a given region is close (in the least squares sense) to some prescribed target distribution. We formulate this problem as PDE-constrained optimization and the locally optimal contour shapes are found using a gradient-based descent algorithm in which the Sobolev shape gradients are obtained using methods of the shape-differential calculus. The main novelty of this work is an accurate and efficient approach to the evaluation of the shape gradients based on a boundary-integral formulation which exploits certain analytical properties of the solution and does not require grids adapted to the contour. This approach is thoroughly validated and optimization results obtained in different test problems exhibit nontrivial shapes of the computed optimal contours.Comment: Accepted for publication in "SIAM Journal on Scientific Computing" (31 pages, 9 figures
    • …
    corecore