831 research outputs found

    A novel lip geometry approach for audio-visual speech recognition

    Get PDF
    By identifying lip movements and characterizing their associations with speech sounds, the performance of speech recognition systems can be improved, particularly when operating in noisy environments. Various method have been studied by research group around the world to incorporate lip movements into speech recognition in recent years, however exactly how best to incorporate ,the additional visual information is still not known. This study aims to extend the knowledge of relationships between visual and speech information specifically using lip geometry information due to its robustness to head rotation and the fewer number of features required to represent movement. A new method has been developed to extract lip geometry information, to perform classification and to integrate visual and speech modalities. This thesis makes several contributions. First, this work presents a new method to extract lip geometry features using the combination ofa skin colour filter, a border following algorithm and a convex hull approach. The proposed method was found to improve lip shape extraction performance compared to existing approaches. Lip geometry features including height, width, ratio, area, perimeter and various combinations of these features were evaluated to determine which performs best when representing speech in the visual domain. Second, a novel template matching techniqLie able to adapt dynamic differences in the way words are uttered by speakers has been developed, which determines the best fit of an unseen feature signal to those stored in a database template. Third, following on evaluation of integration strategies, a novel method has been developed based on alternative decision fusion strategy, in which the outcome from the visual and speech modality is chosen by measuring the quality of audio based on kurtosis and skewness analysis and driven by white noise confusion. Finally, the performance of the new methods introduced in this work are evaluated using the CUAVE and LUNA-V data corpora under a range of different signal to noise ratio conditions using the NOISEX-92 dataset

    Geometrical-based lip-reading using template probabilistic multi-dimension dynamic time warping

    Get PDF
    By identifying lip movements and characterizing their associations with speech sounds, the performance of speech recognition systems can be improved, particularly when operating in noisy environments. In this paper, we present a geometrical-based automatic lip reading system that extracts the lip region from images using conventional techniques, but the contour itself is extracted using a novel application of a combination of border following and convex hull approaches. Classification is carried out using an enhanced dynamic time warping technique that has the ability to operate in multiple dimensions and a template probability technique that is able to compensate for differences in the way words are uttered in the training set. The performance of the new system has been assessed in recognition of the English digits 0 to 9 as available in the CUAVE database. The experimental results obtained from the new approach compared favorably with those of existing lip reading approaches, achieving a word recognition accuracy of up to 71% with the visual information being obtained from estimates of lip height, width and their ratio

    A novel lip geometry approach for audio-visual speech recognition

    Get PDF
    By identifying lip movements and characterizing their associations with speech sounds, the performance of speech recognition systems can be improved, particularly when operating in noisy environments. Various method have been studied by research group around the world to incorporate lip movements into speech recognition in recent years, however exactly how best to incorporate the additional visual information is still not known. This study aims to extend the knowledge of relationships between visual and speech information specifically using lip geometry information due to its robustness to head rotation and the fewer number of features required to represent movement. A new method has been developed to extract lip geometry information, to perform classification and to integrate visual and speech modalities. This thesis makes several contributions. First, this work presents a new method to extract lip geometry features using the combination of a skin colour filter, a border following algorithm and a convex hull approach. The proposed method was found to improve lip shape extraction performance compared to existing approaches. Lip geometry features including height, width, ratio, area, perimeter and various combinations of these features were evaluated to determine which performs best when representing speech in the visual domain. Second, a novel template matching technique able to adapt dynamic differences in the way words are uttered by speakers has been developed, which determines the best fit of an unseen feature signal to those stored in a database template. Third, following on evaluation of integration strategies, a novel method has been developed based on alternative decision fusion strategy, in which the outcome from the visual and speech modality is chosen by measuring the quality of audio based on kurtosis and skewness analysis and driven by white noise confusion. Finally, the performance of the new methods introduced in this work are evaluated using the CUAVE and LUNA-V data corpora under a range of different signal to noise ratio conditions using the NOISEX-92 dataset

    Acoustic modeling using the digital waveguide mesh

    Get PDF
    The digital waveguide mesh has been an active area of music acoustics research for over ten years. Although founded in 1-D digital waveguide modeling, the principles on which it is based are not new to researchers grounded in numerical simulation, FDTD methods, electromagnetic simulation, etc. This article has attempted to provide a considerable review of how the DWM has been applied to acoustic modeling and sound synthesis problems, including new 2-D object synthesis and an overview of recent research activities in articulatory vocal tract modeling, RIR synthesis, and reverberation simulation. The extensive, although not by any means exhaustive, list of references indicates that though the DWM may have parallels in other disciplines, it still offers something new in the field of acoustic simulation and sound synth

    VideoReTalking: Audio-based Lip Synchronization for Talking Head Video Editing In the Wild

    Full text link
    We present VideoReTalking, a new system to edit the faces of a real-world talking head video according to input audio, producing a high-quality and lip-syncing output video even with a different emotion. Our system disentangles this objective into three sequential tasks: (1) face video generation with a canonical expression; (2) audio-driven lip-sync; and (3) face enhancement for improving photo-realism. Given a talking-head video, we first modify the expression of each frame according to the same expression template using the expression editing network, resulting in a video with the canonical expression. This video, together with the given audio, is then fed into the lip-sync network to generate a lip-syncing video. Finally, we improve the photo-realism of the synthesized faces through an identity-aware face enhancement network and post-processing. We use learning-based approaches for all three steps and all our modules can be tackled in a sequential pipeline without any user intervention. Furthermore, our system is a generic approach that does not need to be retrained to a specific person. Evaluations on two widely-used datasets and in-the-wild examples demonstrate the superiority of our framework over other state-of-the-art methods in terms of lip-sync accuracy and visual quality.Comment: Accepted by SIGGRAPH Asia 2022 Conference Proceedings. Project page: https://vinthony.github.io/video-retalking

    Efficient illumination independent appearance-based face tracking

    Get PDF
    One of the major challenges that visual tracking algorithms face nowadays is being able to cope with changes in the appearance of the target during tracking. Linear subspace models have been extensively studied and are possibly the most popular way of modelling target appearance. We introduce a linear subspace representation in which the appearance of a face is represented by the addition of two approxi- mately independent linear subspaces modelling facial expressions and illumination respectively. This model is more compact than previous bilinear or multilinear ap- proaches. The independence assumption notably simplifies system training. We only require two image sequences. One facial expression is subject to all possible illumina- tions in one sequence and the face adopts all facial expressions under one particular illumination in the other. This simple model enables us to train the system with no manual intervention. We also revisit the problem of efficiently fitting a linear subspace-based model to a target image and introduce an additive procedure for solving this problem. We prove that Matthews and Baker’s Inverse Compositional Approach makes a smoothness assumption on the subspace basis that is equiva- lent to Hager and Belhumeur’s, which worsens convergence. Our approach differs from Hager and Belhumeur’s additive and Matthews and Baker’s compositional ap- proaches in that we make no smoothness assumptions on the subspace basis. In the experiments conducted we show that the model introduced accurately represents the appearance variations caused by illumination changes and facial expressions. We also verify experimentally that our fitting procedure is more accurate and has better convergence rate than the other related approaches, albeit at the expense of a slight increase in computational cost. Our approach can be used for tracking a human face at standard video frame rates on an average personal computer

    Audio-Visual Automatic Speech Recognition Using PZM, MFCC and Statistical Analysis

    Get PDF
    Audio-Visual Automatic Speech Recognition (AV-ASR) has become the most promising research area when the audio signal gets corrupted by noise. The main objective of this paper is to select the important and discriminative audio and visual speech features to recognize audio-visual speech. This paper proposes Pseudo Zernike Moment (PZM) and feature selection method for audio-visual speech recognition. Visual information is captured from the lip contour and computes the moments for lip reading. We have extracted 19th order of Mel Frequency Cepstral Coefficients (MFCC) as speech features from audio. Since all the 19 speech features are not equally important, therefore, feature selection algorithms are used to select the most efficient features. The various statistical algorithm such as Analysis of Variance (ANOVA), Kruskal-wallis, and Friedman test are employed to analyze the significance of features along with Incremental Feature Selection (IFS) technique. Statistical analysis is used to analyze the statistical significance of the speech features and after that IFS is used to select the speech feature subset. Furthermore, multiclass Support Vector Machine (SVM), Artificial Neural Network (ANN) and Naive Bayes (NB) machine learning techniques are used to recognize the speech for both the audio and visual modalities. Based on the recognition rate combined decision is taken from the two individual recognition systems. This paper compares the result achieved by the proposed model and the existing model for both audio and visual speech recognition. Zernike Moment (ZM) is compared with PZM and shows that our proposed model using PZM extracts better discriminative features for visual speech recognition. This study also proves that audio feature selection using statistical analysis outperforms methods without any feature selection technique
    • …
    corecore