30,251 research outputs found

    On scattered convex geometries

    Get PDF
    A convex geometry is a closure space satisfying the anti-exchange axiom. For several types of algebraic convex geometries we describe when the collection of closed sets is order scattered, in terms of obstructions to the semilattice of compact elements. In particular, a semilattice Ω(η)\Omega(\eta), that does not appear among minimal obstructions to order-scattered algebraic modular lattices, plays a prominent role in convex geometries case. The connection to topological scatteredness is established in convex geometries of relatively convex sets.Comment: 25 pages, 1 figure, submitte

    Statistical Lorentzian geometry and the closeness of Lorentzian manifolds

    Full text link
    I introduce a family of closeness functions between causal Lorentzian geometries of finite volume and arbitrary underlying topology. When points are randomly scattered in a Lorentzian manifold, with uniform density according to the volume element, some information on the topology and metric is encoded in the partial order that the causal structure induces among those points; one can then define closeness between Lorentzian geometries by comparing the sets of probabilities they give for obtaining the same posets. If the density of points is finite, one gets a pseudo-distance, which only compares the manifolds down to a finite volume scale, as illustrated here by a fully worked out example of two 2-dimensional manifolds of different topology; if the density is allowed to become infinite, a true distance can be defined on the space of all Lorentzian geometries. The introductory and concluding sections include some remarks on the motivation for this definition and its applications to quantum gravity.Comment: Plain TeX, 19 pages + 3 figures, revised version for publication in J.Math.Phys., significantly improved conten

    Sublattices of lattices of convex subsets of vector spaces

    Full text link
    For a left vector space V over a totally ordered division ring F, let Co(V) denote the lattice of convex subsets of V. We prove that every lattice L can be embedded into Co(V) for some left F-vector space V. Furthermore, if L is finite lower bounded, then V can be taken finite-dimensional, and L embeds into a finite lower bounded lattice of the form Co(V,Z)={XZXCo(V)}Co(V,Z)=\{X\cap Z | X\in Co(V)\}, for some finite subset ZZ of VV. In particular, we obtain a new universal class for finite lower bounded lattices

    Antimatroids and Balanced Pairs

    Full text link
    We generalize the 1/3-2/3 conjecture from partially ordered sets to antimatroids: we conjecture that any antimatroid has a pair of elements x,y such that x has probability between 1/3 and 2/3 of appearing earlier than y in a uniformly random basic word of the antimatroid. We prove the conjecture for antimatroids of convex dimension two (the antimatroid-theoretic analogue of partial orders of width two), for antimatroids of height two, for antimatroids with an independent element, and for the perfect elimination antimatroids and node search antimatroids of several classes of graphs. A computer search shows that the conjecture is true for all antimatroids with at most six elements.Comment: 16 pages, 5 figure

    Finite convex geometries of circles

    Full text link
    Let F be a finite set of circles in the plane. We point out that the usual convex closure restricted to F yields a convex geometry, that is, a combinatorial structure introduced by P. H Edelman in 1980 under the name "anti-exchange closure system". We prove that if the circles are collinear and they are arranged in a "concave way", then they determine a convex geometry of convex dimension at most 2, and each finite convex geometry of convex dimension at most 2 can be represented this way. The proof uses some recent results from Lattice Theory, and some of the auxiliary statements on lattices or convex geometries could be of separate interest. The paper is concluded with some open problems.Comment: 22 pages, 7 figure

    Greedy algorithms and poset matroids

    Full text link
    We generalize the matroid-theoretic approach to greedy algorithms to the setting of poset matroids, in the sense of Barnabei, Nicoletti and Pezzoli (1998) [BNP]. We illustrate our result by providing a generalization of Kruskal algorithm (which finds a minimum spanning subtree of a weighted graph) to abstract simplicial complexes

    An algebraic framework for the greedy algorithm with applications to the core and Weber set of cooperative games

    Get PDF
    An algebraic model generalizing submodular polytopes is presented, where modular functions on partially ordered sets take over the role of vectors in Rn{\mathbb R}^n. This model unifies various generalizations of combinatorial models in which the greedy algorithm and the Monge algorithm are successful and generalizations of the notions of core and Weber set in cooperative game theory. As a further application, we show that an earlier model of ours as well as the algorithmic model of Queyranne, Spieksma and Tardella for the Monge algorithm can be treated within the framework of usual matroid theory (on unordered ground-sets), which permits also the efficient algorithmic solution of the intersection problem within this model. \u
    corecore