2,608 research outputs found

    Joint Beamforming and Power Control in Coordinated Multicell: Max-Min Duality, Effective Network and Large System Transition

    Full text link
    This paper studies joint beamforming and power control in a coordinated multicell downlink system that serves multiple users per cell to maximize the minimum weighted signal-to-interference-plus-noise ratio. The optimal solution and distributed algorithm with geometrically fast convergence rate are derived by employing the nonlinear Perron-Frobenius theory and the multicell network duality. The iterative algorithm, though operating in a distributed manner, still requires instantaneous power update within the coordinated cluster through the backhaul. The backhaul information exchange and message passing may become prohibitive with increasing number of transmit antennas and increasing number of users. In order to derive asymptotically optimal solution, random matrix theory is leveraged to design a distributed algorithm that only requires statistical information. The advantage of our approach is that there is no instantaneous power update through backhaul. Moreover, by using nonlinear Perron-Frobenius theory and random matrix theory, an effective primal network and an effective dual network are proposed to characterize and interpret the asymptotic solution.Comment: Some typos in the version publised in the IEEE Transactions on Wireless Communications are correcte

    Power Aware Wireless File Downloading: A Constrained Restless Bandit Approach

    Full text link
    This paper treats power-aware throughput maximization in a multi-user file downloading system. Each user can receive a new file only after its previous file is finished. The file state processes for each user act as coupled Markov chains that form a generalized restless bandit system. First, an optimal algorithm is derived for the case of one user. The algorithm maximizes throughput subject to an average power constraint. Next, the one-user algorithm is extended to a low complexity heuristic for the multi-user problem. The heuristic uses a simple online index policy and its effectiveness is shown via simulation. For simple 3-user cases where the optimal solution can be computed offline, the heuristic is shown to be near-optimal for a wide range of parameters

    Delay Optimal Event Detection on Ad Hoc Wireless Sensor Networks

    Full text link
    We consider a small extent sensor network for event detection, in which nodes take samples periodically and then contend over a {\em random access network} to transmit their measurement packets to the fusion center. We consider two procedures at the fusion center to process the measurements. The Bayesian setting is assumed; i.e., the fusion center has a prior distribution on the change time. In the first procedure, the decision algorithm at the fusion center is \emph{network-oblivious} and makes a decision only when a complete vector of measurements taken at a sampling instant is available. In the second procedure, the decision algorithm at the fusion center is \emph{network-aware} and processes measurements as they arrive, but in a time causal order. In this case, the decision statistic depends on the network delays as well, whereas in the network-oblivious case, the decision statistic does not depend on the network delays. This yields a Bayesian change detection problem with a tradeoff between the random network delay and the decision delay; a higher sampling rate reduces the decision delay but increases the random access delay. Under periodic sampling, in the network--oblivious case, the structure of the optimal stopping rule is the same as that without the network, and the optimal change detection delay decouples into the network delay and the optimal decision delay without the network. In the network--aware case, the optimal stopping problem is analysed as a partially observable Markov decision process, in which the states of the queues and delays in the network need to be maintained. A sufficient statistic for decision is found to be the network-state and the posterior probability of change having occurred given the measurements received and the state of the network. The optimal regimes are studied using simulation.Comment: To appear in ACM Transactions on Sensor Networks. A part of this work was presented in IEEE SECON 2006, and Allerton 201

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Optimal Sensor Collaboration for Parameter Tracking Using Energy Harvesting Sensors

    Full text link
    In this paper, we design an optimal sensor collaboration strategy among neighboring nodes while tracking a time-varying parameter using wireless sensor networks in the presence of imperfect communication channels. The sensor network is assumed to be self-powered, where sensors are equipped with energy harvesters that replenish energy from the environment. In order to minimize the mean square estimation error of parameter tracking, we propose an online sensor collaboration policy subject to real-time energy harvesting constraints. The proposed energy allocation strategy is computationally light and only relies on the second-order statistics of the system parameters. For this, we first consider an offline non-convex optimization problem, which is solved exactly using semidefinite programming. Based on the offline solution, we design an online power allocation policy that requires minimal online computation and satisfies the dynamics of energy flow at each sensor. We prove that the proposed online policy is asymptotically equivalent to the optimal offline solution and show its convergence rate and robustness. We empirically show that the estimation performance of the proposed online scheme is better than that of the online scheme when channel state information about the dynamical system is available in the low SNR regime. Numerical results are conducted to demonstrate the effectiveness of our approach
    • …
    corecore