14,157 research outputs found

    Geometrical relations between space time block code designs and complexity reduction

    Full text link
    In this work, the geometric relation between space time block code design for the coherent channel and its non-coherent counterpart is exploited to get an analogue of the information theoretic inequality I(X;S)I((X,H);S)I(X;S)\le I((X,H);S) in terms of diversity. It provides a lower bound on the performance of non-coherent codes when used in coherent scenarios. This leads in turn to a code design decomposition result splitting coherent code design into two complexity reduced sub tasks. Moreover a geometrical criterion for high performance space time code design is derived.Comment: final version, 11 pages, two-colum

    Space Frequency Codes from Spherical Codes

    Full text link
    A new design method for high rate, fully diverse ('spherical') space frequency codes for MIMO-OFDM systems is proposed, which works for arbitrary numbers of antennas and subcarriers. The construction exploits a differential geometric connection between spherical codes and space time codes. The former are well studied e.g. in the context of optimal sequence design in CDMA systems, while the latter serve as basic building blocks for space frequency codes. In addition a decoding algorithm with moderate complexity is presented. This is achieved by a lattice based construction of spherical codes, which permits lattice decoding algorithms and thus offers a substantial reduction of complexity.Comment: 5 pages. Final version for the 2005 IEEE International Symposium on Information Theor

    Large Eddy Simulations of gaseous flames in gas turbine combustion chambers

    Get PDF
    Recent developments in numerical schemes, turbulent combustion models and the regular increase of computing power allow Large Eddy Simulation (LES) to be applied to real industrial burners. In this paper, two types of LES in complex geometry combustors and of specific interest for aeronautical gas turbine burners are reviewed: (1) laboratory-scale combustors, without compressor or turbine, in which advanced measurements are possible and (2) combustion chambers of existing engines operated in realistic operating conditions. Laboratory-scale burners are designed to assess modeling and funda- mental flow aspects in controlled configurations. They are necessary to gauge LES strategies and identify potential limitations. In specific circumstances, they even offer near model-free or DNS-like LES computations. LES in real engines illustrate the potential of the approach in the context of industrial burners but are more difficult to validate due to the limited set of available measurements. Usual approaches for turbulence and combustion sub-grid models including chemistry modeling are first recalled. Limiting cases and range of validity of the models are specifically recalled before a discussion on the numerical breakthrough which have allowed LES to be applied to these complex cases. Specific issues linked to real gas turbine chambers are discussed: multi-perforation, complex acoustic impedances at inlet and outlet, annular chambers.. Examples are provided for mean flow predictions (velocity, temperature and species) as well as unsteady mechanisms (quenching, ignition, combustion instabil- ities). Finally, potential perspectives are proposed to further improve the use of LES for real gas turbine combustor designs

    Designing and manufacturing assemblies

    Get PDF

    An integrated quantitative framework for supporting product design : the case of metallic moulds for injection

    Get PDF
    Tese de Doutoramento. Programa Doutoral em Engenharia Industrial e Gestão. Faculdade de Engenharia. Universidade do Porto. 201

    Modeling And Simulation Of a Continious Folding Process Of An Origami Pattern

    Get PDF
    The engineering applications of origami has gathered tremendous attention in recent years. Various aspects of origami have different characteristics based on its application. The shape changing aspect is used in areas where size is a constraint. The structural rigidity aspect is utilized where strength is needed with a minimal increase in weight. When polymer or metal sheets are processed to have origami creases, they exhibit an improvement in mechanical properties. The sheets which create a specific local texture by means of tessellated folds patterns are called folded textured sheets[1]. These sheets are utilized to create fold cores. These light-weight sandwiched structures are heavily used in the aerospace industry, due to its ability to prevent moisture accumulation on the aeronautical structures at higher altitudes. The objective of the current research is to explore a new method for the continuous production of these folded textured sheets. The method uses a laser etching setup to mark the sheet with the origami pattern. The pattern is then formed by dies and passes through a conveyor system which is specifically arranged like a funnel to complete the final stage of the forming process. A simulation approach is utilized to evaluate the method. Results show the feasibility of the process along with its limitations. The design is made to be feasible for scaling up for large scale manufactur
    corecore