36 research outputs found

    MRI-Based Computational Torso/Biventricular Multiscale Models to Investigate the Impact of Anatomical Variability on the ECG QRS Complex

    Get PDF
    Aims:Patient-to-patient anatomical differences are an important source of variability in the electrocardiogram, and they may compromise the identification of pathological electrophysiological abnormalities. This study aims at quantifying the contribution of variability in ventricular and torso anatomies to differences in QRS complexes of the 12-lead ECG using computer simulations. Methods:A computational pipeline is presented that enables computer simulations using human torso/biventricular anatomically based electrophysiological models from clinically standard magnetic resonance imaging (MRI). The ventricular model includes membrane kinetics represented by the biophysically detailed O’Hara Rudy model modified for tissue heterogeneity and includes fiber orientation based on the Streeter rule. A population of 265 torso/biventricular models was generated by combining ventricular and torso anatomies obtained from clinically standard MRIs, augmented with a statistical shape model of the body. 12-lead ECGs were simulated on the 265 human torso/biventricular electrophysiology models, and QRS morphology,duration and amplitude were quantified in each ECG lead for each of the human torso-biventricular models. Results:QRS morphologies in limb leads are mainly determined by ventricular anatomy,while in the precordial leads, and especially V1 to V4, they are determined by heart position within the torso. Differences in ventricular orientation within the torso can explain morphological variability from monophasic to biphasic QRS complexes. QRS duration ismainly influenced by myocardial volume, while it is hardly affected by the torso anatomyor position. An average increase of 0.12±0.05 ms in QRS duration is obtained for eachcm3of myocardial volume across all the leads while it hardly changed due to changes in torso volume. Conclusion:Computer simulations using populations of human torso/biventricular models based on clinical MRI enable quantification of anatomical causes of variability in the QRS complex of the 12-lead ECG. The human models presented also pave theway toward their use as testbeds in silico clinical trial

    Individual identification via electrocardiogram analysis

    Get PDF
    Background: During last decade the use of ECG recordings in biometric recognition studies has increased. ECG characteristics made it suitable for subject identification: it is unique, present in all living individuals, and hard to forge. However, in spite of the great number of approaches found in literature, no agreement exists on the most appropriate methodology. This study aimed at providing a survey of the techniques used so far in ECG-based human identification. Specifically, a pattern recognition perspective is here proposed providing a unifying framework to appreciate previous studies and, hopefully, guide future research. Methods: We searched for papers on the subject from the earliest available date using relevant electronic databases (Medline, IEEEXplore, Scopus, and Web of Knowledge). The following terms were used in different combinations: electrocardiogram, ECG, human identification, biometric, authentication and individual variability. The electronic sources were last searched on 1st March 2015. In our selection we included published research on peer-reviewed journals, books chapters and conferences proceedings. The search was performed for English language documents. Results: 100 pertinent papers were found. Number of subjects involved in the journal studies ranges from 10 to 502, age from 16 to 86, male and female subjects are generally present. Number of analysed leads varies as well as the recording conditions. Identification performance differs widely as well as verification rate. Many studies refer to publicly available databases (Physionet ECG databases repository) while others rely on proprietary recordings making difficult them to compare. As a measure of overall accuracy we computed a weighted average of the identification rate and equal error rate in authentication scenarios. Identification rate resulted equal to 94.95 % while the equal error rate equal to 0.92 %. Conclusions: Biometric recognition is a mature field of research. Nevertheless, the use of physiological signals features, such as the ECG traits, needs further improvements. ECG features have the potential to be used in daily activities such as access control and patient handling as well as in wearable electronics applications. However, some barriers still limit its growth. Further analysis should be addressed on the use of single lead recordings and the study of features which are not dependent on the recording sites (e.g. fingers, hand palms). Moreover, it is expected that new techniques will be developed using fiducials and non-fiducial based features in order to catch the best of both approaches. ECG recognition in pathological subjects is also worth of additional investigations

    The relation of 12 lead ECG to the cardiac anatomy: The normal CineECG.

    Get PDF
    Abstract Background The interpretation of the 12‑lead ECG is notoriously difficult and requires experts to distinguish normal from abnormal ECG waveforms. ECG waveforms depend on body build and electrode positions, both often different in males and females. To relate the ECG waveforms to cardiac anatomical structures is even more difficult. The novel CineECG algorithm enables a direct projection of the 12‑lead ECG to the cardiac anatomy by computing the mean location of cardiac activity over time. The aim of this study is to investigate the cardiac locations of the CineECG derived from standard 12‑lead ECGs of normal subjects. Methods In this study we used 6525 12‑lead ECG tracings labelled as normal obtained from the certified Physionet PTB XL Diagnostic ECG Database to construct the CineECG. All 12 lead ECGs were analyzed, and then divided by age groups (18–29,30-39,40-49,50-59,60-69,70–100 years) and by gender (male/female). For each ECG, we computed the CineECG within a generic 3D heart/torso model. Based on these CineECG's, the average normal cardiac location and direction for QRS, STpeak, and TpeakTend segments were determined. Results The CineECG direction for the QRS segment showed large variation towards the left free wall, whereas the STT segments were homogeneously directed towards the septal/apical region. The differences in the CineECG location for the QRS, STpeak, and TpeakTend between the age and gender groups were relatively small (maximally 10 mm at end T-wave), although between the gender groups minor differences were found in the 4 chamber direction angles (QRS 4°, STpeak 5°, and TpeakTend 8°) and LAO (QRS 1°, STpeak 13°, and TpeakTend 30°). Conclusion CineECG demonstrated to be a feasible and pragmatic solution for ECG waveform interpretation, relating the ECG directly to the cardiac anatomy. The variations in depolarization and repolarization CineECG were small within this group of normal healthy controls, both in cardiac location as well as in direction. CineECG may enable an easier discrimination between normal and abnormal QRS and T-wave morphologies, reducing the amount of expert training. Further studies are needed to prove whether novel CineECG can significantly contribute to the discrimination of normal versus abnormal ECG tracings

    Effects of lead position, cardiac rhythm variation and drug-induced QT prolongation on performance of machine learning methods for ECG processing

    Full text link
    Machine learning shows great performance in various problems of electrocardiography (ECG) signal analysis. However, collecting a dataset for biomedical engineering is a very difficult task. Any dataset for ECG processing contains from 100 to 10,000 times fewer cases than datasets for image or text analysis. This issue is especially important because of physiological phenomena that can significantly change the morphology of heartbeats in ECG signals. In this preliminary study, we analyze the effects of lead choice from the standard ECG recordings, variation of ECG during 24-hours, and the effects of QT-prolongation agents on the performance of machine learning methods for ECG processing. We choose the problem of subject identification for analysis, because this problem may be solved for almost any available dataset of ECG data. In a discussion, we compare our findings with observations from other works that use machine learning for ECG processing with different problem statements. Our results show the importance of training dataset enrichment with ECG signals acquired in specific physiological conditions for obtaining good performance of ECG processing for real applications

    ECG Biometric for Human Authentication using Hybrid Method

    Get PDF
    Recently there is more usage of deep learning in biometrics. Electrocardiogram (ECG) for person authentication is not the exception. However the performance of the deep learning networks purely relay on the datasets and trainings, In this work we propose a fusion of pretrained Convolutional Neural Networks (CNN) such as Googlenet with SVM for person authentication using there ECG as biometric. The one dimensional ECG signals are filtered and converted into a standard size with suitable format before it is used to train the networks. An evaluation of performances shows the good results with the pre-trained network that is Googlenet. The accuracy results reveal that the proposed fusion method outperforms with an average accuracy of 95.0%

    Personalized Monitoring and Advance Warning System for Cardiac Arrhythmias

    Get PDF
    Each year more than 7 million people die from cardiac arrhythmias. Yet no robust solution exists today to detect such heart anomalies right at the moment they occur. The purpose of this study was to design a personalized health monitoring system that can detect early occurrences of arrhythmias from an individual's electrocardiogram (ECG) signal. We first modelled the common causes of arrhythmias in the signal domain as a degradation of normal ECG beats to abnormal beats. Using the degradation models, we performed abnormal beat synthesis which created potential abnormal beats from the average normal beat of the individual. Finally, a Convolutional Neural Network (CNN) was trained using real normal and synthesized abnormal beats. As a personalized classifier, the trained CNN can monitor ECG beats in real time for arrhythmia detection. Over 34 patients' ECG records with a total of 63,341 ECG beats from the MIT-BIH arrhythmia benchmark database, we have shown that the probability of detecting one or more abnormal ECG beats among the first three occurrences is higher than 99.4% with a very low false-alarm rate. 1 2017 The Author(s).Scopu

    Electrocardiogram Heartbeat Classification Using Convolutional Neural Networks for the Detection of Cardiac Arrhythmia

    Full text link
    The classification of the electrocardiogram (ECG) signal has a vital impact on identifying heart-related diseases. This can ensure the premature finding of heart disease and the proper selection of the patient's customized treatment. However, the detection of arrhythmia is a challenging task to perform manually. This justifies the necessity of a technique for automatic detection of abnormal heart signals. Therefore, our work is based on the classification of five classes of ECG arrhythmic signals from Physionet's MIT-BIH Arrhythmia Dataset. Artificial Neural Networks (ANN) have demonstrated significant success in ECG signal classification. Our proposed model is a Convolutional Neural Network (CNN) customized to categorize the ECG signals. Our result testifies that the planned CNN model can successfully categorize arrhythmia with an overall accuracy of 95.2%. The average precision and recall of the proposed model are 95.2% and 95.4%, respectively. This model can effectively be used to detect irregularities of heart rhythm at an early stage.Comment: 4th International conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC 2020), IEEE, 7-9 October 2020, TamilNadu, INDI

    Global ECG Classification by Self-Operational Neural Networks with Feature Injection

    Get PDF
    Objective: Global (inter-patient) ECG classification for arrhythmia detection over Electrocardiogram (ECG) signal is a challenging task for both humans and machines. The main reason is the significant variations of both normal and arrhythmic ECG patterns among patients. Automating this process with utmost accuracy is, therefore, highly desirable due to the advent of wearable ECG sensors. However, even with numerous deep learning approaches proposed recently, there is still a notable gap in the performance of global and patient-specific ECG classification performances. This study proposes a novel approach to narrow this gap and propose a real-time solution with shallow and compact 1D Self-Organized Operational Neural Networks (Self-ONNs). Methods: In this study, we propose a novel approach for inter-patient ECG classification using a compact 1D Self-ONN by exploiting morphological and timing information in heart cycles. We used 1D Self-ONN layers to automatically learn morphological representations from ECG data, enabling us to capture the shape of the ECG waveform around the R peaks. We further inject temporal features based on RR interval for timing characterization. The classification layers can thus benefit from both temporal and learned features for the final arrhythmia classification. Results: Using the MIT-BIH arrhythmia benchmark database, the proposed method achieves the highest classification performance ever achieved, i.e., 99.21% precision, 99.10% recall, and 99.15% F1-score for normal (N) segments; 82.19% precision, 82.50% recall, and 82.34% F1-score for the supra-ventricular ectopic beat (SVEBs); and finally, 94.41% precision, 96.10% recall, and 95.2% F1-score for the ventricular-ectopic beats (VEBs)
    corecore