207 research outputs found

    Computer-Aided Diagnosis Software for Hypertensive Risk Determination Through Fundus Image Processing

    Full text link
    "(c) 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works."The goal of the software proposed in this paper is to assist ophthalmologists in diagnosis and disease prevention, helping them to determine cardiovascular risk or other diseases where the vessels can be altered, as well as to monitor the pathology progression and response to different treatments. The performance of the tool has been evaluated by means of a double-blind study where its sensitivity, specificity, and reproducibility to discriminate between health fundus (without cardiovascular risk) and hypertensive patients has been calculated in contrast to an expert ophthalmologist opinion obtained through a visual inspection of the fundus image. An improvement of almost 20% has been achieved comparing the system results with the clinical visual classification.This work was supported in part by Ministerio de Economia y Competitividad of Spain, Project ACRIMA (TIN2013-46751-R) and partially by the Projects Consolider-C (SEJ2006 14301/PSIC), CIBER of Physiopathology of Obesity and Nutrition, an initiative of ISCIII, and the Excellence Research Program PROMETEO (Generalitat Valenciana. Conselleria de Educacion, 2008157).Morales Martínez, S.; Naranjo Ornedo, V.; Navea, A.; Alcañiz Raya, ML. (2014). Computer-Aided Diagnosis Software for Hypertensive Risk Determination Through Fundus Image Processing. IEEE Journal of Biomedical and Health Informatics. 18(6):1757-1763. https://doi.org/10.1109/JBHI.2014.2337960S1757176318

    Ophthalmologic Image Registration Based on Shape-Context: Application to Fundus Autofluorescence (FAF) Images

    No full text
    Online access to subscriber only at http://www.actapress.com/Content_Of_Proceeding.aspx?ProceedingID=494International audienceA novel registration algorithm, which was developed in order to facilitate ophthalmologic image processing, is presented in this paper. It has been evaluated on FAF images, which present low Si gnal/Noise Ratio (SNR) and variations in dynamic grayscale range. These characteristics complicate the registration process and cause a failure to area-based registration techniques [1, 2] . Our method is based on shape-context theory [3] . In the first step, images are enhanced by Gaussian model based histog ram modification. Features are extracted in the next step by morphological operators, which are used to detect an approximation of vascular tree from both reference and floating images. Simplified medial axis of vessels is then calculated. From each image, a set of control points called Bifurcation Points (BPs) is extracted from the medial axis through a new fast algorithm. Radial histogram is formed for each BP using the medial axis. The Chi2 distance is measured between two sets of BPs based on radial histogram. Hungarian algorithm is applied to assign the correspondence among BPs from reference and floating images. The algorithmic robustness is evaluated by mutual information criteria between manual registration considered as Ground Truth and automatic one

    Human treelike tubular structure segmentation: A comprehensive review and future perspectives

    Get PDF
    Various structures in human physiology follow a treelike morphology, which often expresses complexity at very fine scales. Examples of such structures are intrathoracic airways, retinal blood vessels, and hepatic blood vessels. Large collections of 2D and 3D images have been made available by medical imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), Optical coherence tomography (OCT) and ultrasound in which the spatial arrangement can be observed. Segmentation of these structures in medical imaging is of great importance since the analysis of the structure provides insights into disease diagnosis, treatment planning, and prognosis. Manually labelling extensive data by radiologists is often time-consuming and error-prone. As a result, automated or semi-automated computational models have become a popular research field of medical imaging in the past two decades, and many have been developed to date. In this survey, we aim to provide a comprehensive review of currently publicly available datasets, segmentation algorithms, and evaluation metrics. In addition, current challenges and future research directions are discussed

    Human Treelike Tubular Structure Segmentation: A Comprehensive Review and Future Perspectives

    Get PDF
    Various structures in human physiology follow a treelike morphology, which often expresses complexity at very fine scales. Examples of such structures are intrathoracic airways, retinal blood vessels, and hepatic blood vessels. Large collections of 2D and 3D images have been made available by medical imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), Optical coherence tomography (OCT) and ultrasound in which the spatial arrangement can be observed. Segmentation of these structures in medical imaging is of great importance since the analysis of the structure provides insights into disease diagnosis, treatment planning, and prognosis. Manually labelling extensive data by radiologists is often time-consuming and error-prone. As a result, automated or semi-automated computational models have become a popular research field of medical imaging in the past two decades, and many have been developed to date. In this survey, we aim to provide a comprehensive review of currently publicly available datasets, segmentation algorithms, and evaluation metrics. In addition, current challenges and future research directions are discussed.Comment: 30 pages, 19 figures, submitted to CBM journa

    Retinal Vascular Network Topology Reconstruction and Artery/Vein Classification via Dominant Set Clustering

    Get PDF
    The estimation of vascular network topology in complex networks is important in understanding the relationship between vascular changes and a wide spectrum of diseases. Automatic classification of the retinal vascular trees into arteries and veins is of direct assistance to the ophthalmologist in terms of diagnosis and treatment of eye disease. However, it is challenging due to their projective ambiguity and subtle changes in appearance, contrast and geometry in the imaging process. In this paper, we propose a novel method that is capable of making the artery/vein (A/V) distinction in retinal color fundus images based on vascular network topological properties. To this end, we adapt the concept of dominant set clustering and formalize the retinal blood vessel topology estimation and the A/V classification as a pairwise clustering problem. The graph is constructed through image segmentation, skeletonization and identification of significant nodes. The edge weight is defined as the inverse Euclidean distance between its two end points in the feature space of intensity, orientation, curvature, diameter, and entropy. The reconstructed vascular network is classified into arteries and veins based on their intensity and morphology. The proposed approach has been applied to five public databases, INSPIRE, IOSTAR, VICAVR, DRIVE and WIDE, and achieved high accuracies of 95.1%, 94.2%, 93.8%, 91.1%, and 91.0%, respectively. Furthermore, we have made manual annotations of the blood vessel topologies for INSPIRE, IOSTAR, VICAVR, and DRIVE datasets, and these annotations are released for public access so as to facilitate researchers in the community

    A fluid-dynamic based approach to reconnect the retinal vessels in fundus photography

    Get PDF
    This paper introduces the use of fluid-dynamic modeling to determine the connectivity of overlapping venous and arterial vessels in fundus images. Analysis of the retinal vascular network may provide information related to systemic and local disorders. However, the automated identification of the vascular trees in retinal images is a challenging task due to the low signal-to-noise ratio, nonuniform illumination and the fact that fundus photography is a projection on to the imaging plane of three-dimensional retinal tissue. A zero-dimensional model was created to estimate the hemodynamic status of candidate tree configurations. Simulated annealing was used to search for an optimal configuration. Experimental results indicate that simulated annealing was very efficient on test cases that range from small to medium size networks, while ineffective on large networks. Although for large networks the nonconvexity of the cost function and the large solution space made searching for the optimal solution difficult, the accuracy (average success rate = 98.35%), and simplicity of our novel approach demonstrate its potential effectiveness in segmenting retinal vascular trees

    Computational analysis of blood flow and oxygen transport in the retinal arterial network

    No full text
    Pathological changes in retinal microvasculature are known to be associated with systemic diseases such as hypertension and diabetes, and may result in potentially disadvantageous blood flow and impair oxygen distribution. Therefore, in order to improve our understanding of the link between systemic diseases and the retinal circulation, it is necessary to develop an approach to quantitatively determine the hemodynamic and oxygen transport parameters in the retinal vascular circulation. This thesis aims to provide more insights into the detailed hemodynamic features of the retinal arterial tree by means of non-invasive imaging and computational modelling. It covers the following two aspects: i) 3D reconstruction of the retinal arterial tree, and ii) development of an image-based computational model to predict blood flow and oxygen transport in realistic subject-specific retinal arterial trees. The latter forms the main body of the thesis. 3D reconstruction of the retinal arterial tree was performed based on retinal images acquired in vivo with a fundus camera and validated using a simple 3D object. The reproduction procedure was found to be feasible but with limited accuracy. In the proposed 2D computational model, the smaller peripheral vessels indistinguishable from the retinal images were represented by self-similar asymmetric structured trees. The non-Newtonian properties of blood, and nonlinear oxyhemoglobin dissociation in the red blood cells and plasma were considered. The simulation results of the computational model were found in good agreement with in vivo measurements reported in the literature. In order to understand the effect of retinal vascular structure on blood flow and oxygen transport, the computational model was applied to subject-specific geometries for a number of hypertensive and diabetic patients, and comparisons were made with results obtained from healthy retinal arterial networks. Moreover, energy analysis of normal and hypertensive subjects was performed using 3D hypothetical models. Finally, the influence of different viscosity models on flow and oxygen transport in a retinal tree and the advantage of low dimensional models were examined. This study has demonstrated the applicability of the image-based computational modelling to study the hemodynamics and oxygen distribution in the retinal arterial network

    Automatic Segmentation of Optic Disc in Eye Fundus Images: A Survey

    Get PDF
    Optic disc detection and segmentation is one of the key elements for automatic retinal disease screening systems. The aim of this survey paper is to review, categorize and compare the optic disc detection algorithms and methodologies, giving a description of each of them, highlighting their key points and performance measures. Accordingly, this survey firstly overviews the anatomy of the eye fundus showing its main structural components along with their properties and functions. Consequently, the survey reviews the image enhancement techniques and also categorizes the image segmentation methodologies for the optic disc which include property-based methods, methods based on convergence of blood vessels, and model-based methods. The performance of segmentation algorithms is evaluated using a number of publicly available databases of retinal images via evaluation metrics which include accuracy and true positive rate (i.e. sensitivity). The survey, at the end, describes the different abnormalities occurring within the optic disc region

    Retinal vessel local tortuosity under a macula-to-optic disc central-framing change

    Get PDF
    Some ocular and cardiovascular diseases can be detected through the increased tortuosity of retinal blood vessels. Objective tortuosity measures can be obtained from digital image analysis of a retinography. This study tested a set of local tortuosity indices under a change in the frame center (macula, optic disc) of the eye fundus image. We illustrate the effects of such a change on 40 pairs of vessels evaluated with eight tortuosity indices. We show that the frame center change caused significant differences in the mean values of the vast majority of the tortuosity indices analyzed. The index defined as the ratio of the curvature to the arc length of a vessel segment proved to be the most robust in relation to a frame center change. Experimental results obtained from the analysis of clinical images are provided and discussed.This research was funded by Agencia Estatal de Investigación of the Spanish Government, grant number PID2020-114582RB-I00/AEI/10.13039/501100011033.Peer ReviewedPostprint (published version

    Computational Analysis of Fundus Images: Rule-Based and Scale-Space Models

    Get PDF
    Fundus images are one of the most important imaging examinations in modern ophthalmology because they are simple, inexpensive and, above all, noninvasive. Nowadays, the acquisition and storage of highresolution fundus images is relatively easy and fast. Therefore, fundus imaging has become a fundamental investigation in retinal lesion detection, ocular health monitoring and screening programmes. Given the large volume and clinical complexity associated with these images, their analysis and interpretation by trained clinicians becomes a timeconsuming task and is prone to human error. Therefore, there is a growing interest in developing automated approaches that are affordable and have high sensitivity and specificity. These automated approaches need to be robust if they are to be used in the general population to diagnose and track retinal diseases. To be effective, the automated systems must be able to recognize normal structures and distinguish them from pathological clinical manifestations. The main objective of the research leading to this thesis was to develop automated systems capable of recognizing and segmenting retinal anatomical structures and retinal pathological clinical manifestations associated with the most common retinal diseases. In particular, these automated algorithms were developed on the premise of robustness and efficiency to deal with the difficulties and complexity inherent in these images. Four objectives were considered in the analysis of fundus images. Segmentation of exudates, localization of the optic disc, detection of the midline of blood vessels, segmentation of the vascular network and detection of microaneurysms. In addition, we also evaluated the detection of diabetic retinopathy on fundus images using the microaneurysm detection method. An overview of the state of the art is presented to compare the performance of the developed approaches with the main methods described in the literature for each of the previously described objectives. To facilitate the comparison of methods, the state of the art has been divided into rulebased methods and machine learningbased methods. In the research reported in this paper, rulebased methods based on image processing methods were preferred over machine learningbased methods. In particular, scalespace methods proved to be effective in achieving the set goals. Two different approaches to exudate segmentation were developed. The first approach is based on scalespace curvature in combination with the local maximum of a scalespace blob detector and dynamic thresholds. The second approach is based on the analysis of the distribution function of the maximum values of the noise map in combination with morphological operators and adaptive thresholds. Both approaches perform a correct segmentation of the exudates and cope well with the uneven illumination and contrast variations in the fundus images. Optic disc localization was achieved using a new technique called cumulative sum fields, which was combined with a vascular enhancement method. The algorithm proved to be reliable and efficient, especially for pathological images. The robustness of the method was tested on 8 datasets. The detection of the midline of the blood vessels was achieved using a modified corner detector in combination with binary philtres and dynamic thresholding. Segmentation of the vascular network was achieved using a new scalespace blood vessels enhancement method. The developed methods have proven effective in detecting the midline of blood vessels and segmenting vascular networks. The microaneurysm detection method relies on a scalespace microaneurysm detection and labelling system. A new approach based on the neighbourhood of the microaneurysms was used for labelling. Microaneurysm detection enabled the assessment of diabetic retinopathy detection. The microaneurysm detection method proved to be competitive with other methods, especially with highresolution images. Diabetic retinopathy detection with the developed microaneurysm detection method showed similar performance to other methods and human experts. The results of this work show that it is possible to develop reliable and robust scalespace methods that can detect various anatomical structures and pathological features of the retina. Furthermore, the results obtained in this work show that although recent research has focused on machine learning methods, scalespace methods can achieve very competitive results and typically have greater independence from image acquisition. The methods developed in this work may also be relevant for the future definition of new descriptors and features that can significantly improve the results of automated methods.As imagens do fundo do olho são hoje um dos principais exames imagiológicos da oftalmologia moderna, pela sua simplicidade, baixo custo e acima de tudo pelo seu carácter nãoinvasivo. A aquisição e armazenamento de imagens do fundo do olho com alta resolução é também relativamente simples e rápida. Desta forma, as imagens do fundo do olho são um exame fundamental na identificação de alterações retinianas, monitorização da saúde ocular, e em programas de rastreio. Considerando o elevado volume e complexidade clínica associada a estas imagens, a análise e interpretação das mesmas por clínicos treinados tornase uma tarefa morosa e propensa a erros humanos. Assim, há um interesse crescente no desenvolvimento de abordagens automatizadas, acessíveis em custo, e com uma alta sensibilidade e especificidade. Estas devem ser robustas para serem aplicadas à população em geral no diagnóstico e seguimento de doenças retinianas. Para serem eficazes, os sistemas de análise têm que conseguir detetar e distinguir estruturas normais de sinais patológicos. O objetivo principal da investigação que levou a esta tese de doutoramento é o desenvolvimento de sistemas automáticos capazes de detetar e segmentar as estruturas anatómicas da retina, e os sinais patológicos retinianos associados às doenças retinianas mais comuns. Em particular, estes algoritmos automatizados foram desenvolvidos segundo as premissas de robustez e eficácia para lidar com as dificuldades e complexidades inerentes a estas imagens. Foram considerados quatro objetivos de análise de imagens do fundo do olho. São estes, a segmentação de exsudados, a localização do disco ótico, a deteção da linha central venosa dos vasos sanguíneos e segmentação da rede vascular, e a deteção de microaneurismas. De acrescentar que usando o método de deteção de microaneurismas, avaliouse também a capacidade de deteção da retinopatia diabética em imagens do fundo do olho. Para comparar o desempenho das metodologias desenvolvidas neste trabalho, foi realizado um levantamento do estado da arte, onde foram considerados os métodos mais relevantes descritos na literatura para cada um dos objetivos descritos anteriormente. Para facilitar a comparação entre métodos, o estado da arte foi dividido em metodologias de processamento de imagem e baseadas em aprendizagem máquina. Optouse no trabalho de investigação desenvolvido pela utilização de metodologias de análise espacial de imagem em detrimento de metodologias baseadas em aprendizagem máquina. Em particular, as metodologias baseadas no espaço de escalas mostraram ser efetivas na obtenção dos objetivos estabelecidos. Para a segmentação de exsudados foram usadas duas abordagens distintas. A primeira abordagem baseiase na curvatura em espaço de escalas em conjunto com a resposta máxima local de um detetor de manchas em espaço de escalas e limiares dinâmicos. A segunda abordagem baseiase na análise do mapa de distribuição de ruído em conjunto com operadores morfológicos e limiares adaptativos. Ambas as abordagens fazem uma segmentação dos exsudados de elevada precisão, além de lidarem eficazmente com a iluminação nãouniforme e a variação de contraste presente nas imagens do fundo do olho. A localização do disco ótico foi conseguida com uma nova técnica designada por campos de soma acumulativos, combinada com métodos de melhoramento da rede vascular. O algoritmo revela ser fiável e eficiente, particularmente em imagens patológicas. A robustez do método foi verificada pela sua avaliação em oito bases de dados. A deteção da linha central dos vasos sanguíneos foi obtida através de um detetor de cantos modificado em conjunto com filtros binários e limiares dinâmicos. A segmentação da rede vascular foi conseguida com um novo método de melhoramento de vasos sanguíneos em espaço de escalas. Os métodos desenvolvidos mostraram ser eficazes na deteção da linha central dos vasos sanguíneos e na segmentação da rede vascular. Finalmente, o método para a deteção de microaneurismas assenta num formalismo de espaço de escalas na deteção e na rotulagem dos microaneurismas. Para a rotulagem foi utilizada uma nova abordagem da vizinhança dos candidatos a microaneurismas. A deteção de microaneurismas permitiu avaliar também a deteção da retinopatia diabética. O método para a deteção de microaneurismas mostrou ser competitivo quando comparado com outros métodos, em particular em imagens de alta resolução. A deteção da retinopatia diabética exibiu um desempenho semelhante a outros métodos e a especialistas humanos. Os trabalhos descritos nesta tese mostram ser possível desenvolver uma abordagem fiável e robusta em espaço de escalas capaz de detetar diferentes estruturas anatómicas e sinais patológicos da retina. Além disso, os resultados obtidos mostram que apesar de a pesquisa mais recente concentrarse em metodologias de aprendizagem máquina, as metodologias de análise espacial apresentam resultados muito competitivos e tipicamente independentes do equipamento de aquisição das imagens. As metodologias desenvolvidas nesta tese podem ser importantes na definição de novos descritores e características, que podem melhorar significativamente o resultado de métodos automatizados
    corecore