24 research outputs found

    Design and analysis of a MEMS-based electrothermal microgripper

    Get PDF
    Microelectromechanical systems (MEMS) have established themselves in various science and engineering domains. MEMS-based microgrippers provide several advantages in terms of compact size and low cost, and they play vital roles in microassembly and micromanipulation fields within both micromanufacturing and biological sectors. Microactuators based on different actuation principles have been devised to drive MEMS microgrippers. This paper presents a finite element model of a MEMS-based electrothermally actuated microgripper performed using CoventorWare ®. The microgripper design follows standard micromachining processes that make use of reactive ion etching where polysilicon acts as the main structural material while a chromium and gold layer is deposited on the structure for thermal actuation. The simulations are used to assess the performance of the microgripper and to optimise its operating parameters.peer-reviewe

    Micro-electro-thermo-magnetic Actuators for MEMS Applications

    Get PDF
    This research focuses on developing new techniques and designs for highly con- trollable microactuating systems with large force-stroke outputs. A fixed-fixed mi- crobeam is the actuating element in the introduced techniques. Either buckling of a microbridge by thermal stress, lateral deflection of a microbridge by electro- magnetic force, or combined effects of both can be employed for microactuation. The proposed method here is MicroElectroThermoMagnetic Actuation (METMA), which uses the combined techniques of electrical or electro-thermal driving of a mi- crobridge in the presence of a magnetic field. The electrically controllable magnetic field actuates and controls the electrically or electrothermally driven microstruc- tures. METMA provides control with two electrical inputs, the currents driving the microbridge and the current driving the external magnetic field. This method enables a more controllable actuating system. Different designs of microactuators have been implemented by using MEMS Pro as the design software and MUMPs as the standard MEMS fabrication technology. In these designs, a variety of out-of- plane buckling or displacement of fixed-fixed microbeams have been developed and employed as the actuating elements. This paper also introduces a novel actuating technique for larger displacements that uses a two-layer buckling microbridge actu- ated by METMA. Heat transfer principles are applied to investigate temperature distribution in a microbeam, electrothermal heating, and the resulting thermoelas- tic effects. Furthermore, a method for driving microactuators by applying powerful electrical pulses is proposed. The integrated electromagnetic and electrothermal microactuation technique is also studied. A clamped-clamped microbeam carry- ing electrical current has been modeled and simulated in ANSYS. The simulations include electrothermal, thermoelastic, electromagnetic, and electrothermomagnetic effects. The contributions are highlighted, the results are discussed, the research and design limitations are reported, and future works are proposed

    Dynamic modelling for thermal micro-actuators using thermal networks.

    No full text
    International audienceThermal actuators are extensively used in microelectromechanical systems (MEMS). Heat transfer through and around these microstructures are very complex. Knowing and controlling them in order to improve the performance of the micro-actuator, is currently a great challenge. This paper deals with this topic and proposes a dynamic thermal modelling of thermal micro-actuators. Thermal problems may be modelled using electrical analogy. However, current equivalent electrical models (thermal networks) are generally obtained considering only heat transfers through the thickness of structures having considerable height and length in relation to width (walls). These models cannot be directly applied to micro-actuators. In fact, microactuator congurations are based on 3D beam structures, and heat transfers occur through and around length. New dynamic and static thermal networks are then proposed in this paper. The validities of both types of thermal networks have been studied. They are successfully validated by comparison with nite elements simulation and analytical calculations

    MEMS micromirrors for imaging applications

    Get PDF
    Strathclyde theses - ask staff. Thesis no. : T13478Optical MEMS (microelectromechanical systems) are widely used in various applications. In this thesis, the design, simulation and characterisation of two optical MEMS devices for imaging applications, a varifocal micromirror and a 2D scanning micromirror, are introduced. Both devices have been fabricated using the commercial Silicon-on-Insulator multi-users MEMS processes (SOIMUMPs), in the 10 m thick Silicon-on-Insulator (SOI) wafer. Optical MEMS device with variable focal length is a critical component for imaging system miniaturisation. In this thesis, a thermally-actuated varifocal micromirror (VFM) with 1-mm-diameter aperture is introduced. The electrothermal actuation through Joule heating of the micromirror suspensions and the optothermal actuation using incident laser power absorption have been demonstrated as well as finite element method (FEM) simulation comparisons. Especially, the optical aberrations produced by this VFM have been statistically quantified to be negligible throughout the actuation range. A compact imaging system incorporating this VFM has been demonstrated with high quality imaging results. MEMS 2D scanners, or scanning micromirrors, are another type of optical MEMS which have been widely investigated for applications such as biomedical microscope imaging, projection, retinal display and optical switches for telecommunication network, etc. For large and fast scanning motions, the actuation scheme to scan a micromirror in two axes, the structural connections and arrangement are fundamental. The microscanner introduced utilises two types of actuators, electrothermal actuators and electrostatic comb-drives, to scan a 1.2-mm-diameter gold coated silicon micromirror in two orthogonal axes. With assistance of FEM software, CoventorWare, the structure optimisation of actuators and flexure connections are presented. The maximum optical scan angles in two axes by each type of actuator individually and by actuating the two at the same time have been characterised experimentally. By programming actuation signals, the microscanner has achieved a rectangular scan pattern with 7° 10° angular-scan-field at a line-scan rate of around 1656 Hz.Optical MEMS (microelectromechanical systems) are widely used in various applications. In this thesis, the design, simulation and characterisation of two optical MEMS devices for imaging applications, a varifocal micromirror and a 2D scanning micromirror, are introduced. Both devices have been fabricated using the commercial Silicon-on-Insulator multi-users MEMS processes (SOIMUMPs), in the 10 m thick Silicon-on-Insulator (SOI) wafer. Optical MEMS device with variable focal length is a critical component for imaging system miniaturisation. In this thesis, a thermally-actuated varifocal micromirror (VFM) with 1-mm-diameter aperture is introduced. The electrothermal actuation through Joule heating of the micromirror suspensions and the optothermal actuation using incident laser power absorption have been demonstrated as well as finite element method (FEM) simulation comparisons. Especially, the optical aberrations produced by this VFM have been statistically quantified to be negligible throughout the actuation range. A compact imaging system incorporating this VFM has been demonstrated with high quality imaging results. MEMS 2D scanners, or scanning micromirrors, are another type of optical MEMS which have been widely investigated for applications such as biomedical microscope imaging, projection, retinal display and optical switches for telecommunication network, etc. For large and fast scanning motions, the actuation scheme to scan a micromirror in two axes, the structural connections and arrangement are fundamental. The microscanner introduced utilises two types of actuators, electrothermal actuators and electrostatic comb-drives, to scan a 1.2-mm-diameter gold coated silicon micromirror in two orthogonal axes. With assistance of FEM software, CoventorWare, the structure optimisation of actuators and flexure connections are presented. The maximum optical scan angles in two axes by each type of actuator individually and by actuating the two at the same time have been characterised experimentally. By programming actuation signals, the microscanner has achieved a rectangular scan pattern with 7° 10° angular-scan-field at a line-scan rate of around 1656 Hz

    A microgripper for single cell manipulation

    Get PDF
    This thesis presents the development of an electrothermally actuated microgripper for the manipulation of cells and other biological particles. The microgripper has been fabricated using a combination of surface and bulk micromachining techniques in a three mask process. All of the fabrication details have been chosen to enable a tri-layer, polymer (SU8) - metal (Au) - polymer (SU8), membrane to be released from the substrate stress free and without the need for sacrificial layers. An actuator design, which completely eliminates the parasitic resistance of the cold arm, is presented. When compared to standard U-shaped actuators, it improves the thermal efficiency threefold. This enables larger displacements at lower voltages and temperatures. The microgripper is demonstrated in three different configurations: normally open mode, normally closed mode, and normally open/closed mode. It has-been modelled using two coupled analytical models - electrothermal and thermomechanical - which have been custom developed for this application. Unlike previously reported models, the electrothermal model presented here includes the heat exchange between hot and cold arms of the actuators that are separated by a small air gap. A detailed electrothermomechanical characterisation of selected devices has permitted the validation of the models (also performed using finite element analysis) and the assessment of device performance. The device testing includes electrical, deflection, and temperature measurements using infrared (IR) thermography, its use in polymeric actuators reported here for the first time. Successful manipulation experiments have been conducted in both air and liquid environments. Manipulation of live cells (mice oocytes) in a standard biomanipulation station has validated the microgripper as a complementary and unique tool for the single cell experiments that are to be conducted by future generations of biologists in the areas of human reproduction and stem cell research

    Analytical, numerical and experimental study of a horizontal electrothermal MEMS microgripper for the deformability characterisation of human red blood cells

    Get PDF
    Microgrippers are typical microelectromechanical systems (MEMS) that are widely used for micromanipulation and microassembly in both biological and micromanufacturing fields. This paper presents the design, modelling, fabrication and experimental testing of an electrothermal microgripper based on a ‘hot and cold arm’ actuator design that is suitable for the deformability characterisation of human red blood cells (RBCs). The analysis of the mechanical properties of human RBCs is of great interest in the field of medicine as pathological alterations in the deformability characteristics of RBCs have been linked to a number of diseases. The study of the microgripper’s steady-state performance is initially carried out by the development of a lumped analytical model, followed by a numerical model established in CoventorWare® (Coventor, Inc., Cary, NC, USA) using multiphysics finite element analysis. Both analytical and numerical models are based on an electothermomechanical analysis, and take into account the internal heat generation due to the applied potential, as well as conduction heat losses through both the anchor pads and the air gap to the substrate. The models are used to investigate key factors of the actuator’s performance including temperature distribution, deflection and stresses based on an elastic analysis of structures. Results show that analytical and numerical values for temperature and deflection are in good agreement. The analytical and computational models are then validated experimentally using a polysilicon microgripper fabricated by the standard surface micromachining process, PolyMUMPs™ (Durham, NC, USA). The microgripper’s actuation is characterised at atmospheric pressure by optical microscopy studies. Experimental results for the deflection of the microgripper arm tips are found to be in good agreement with the analytical and numerical results, with process-induced variations and the non-linear temperature dependence of the material properties accounting for the slight discrepancies observed. The microgripper is shown to actuate to a maximum opening displacement of 9 μ m at an applied voltage of 3 V, thus being in line with the design requirement of an approximate opening of 8 μ m for securing and characterising a RBC.peer-reviewe

    Développement de micromasques mobiles intégrés appliqués à la fabrication de micro et nanostructures

    Get PDF
    Le sujet de cette thèse est d’introduire l’utilisation de microsystèmes comme micro-outils aidant à la fabrication de micro- et nano-structures. L’intégration de multiples couches de micromasques dont les positions peuvent être ajustées en temps réel alors que des particules métalliques ou des agents de gravures sont transférés à la surface du substrat permet de contrôler la composition, la forme tridimensionnelle et la taille des structures à l’échelle nanométrique, sans recourir à des technologies de nanolithographie.Cette méthode de structuration est ensuite généralisée à l’ajustement mécanique de la réponse en fréquence de microrésonateurs présentant de large facteur de qualités. Le dépôt de couches métalliques à la surface d’une structure résonante permet d’ajuster son moment d’inertie et sa masse, et par suite d’ajuster sa fréquence de résonance. L’épaisseur des dépôts métalliques est défini par la position d’un micromasque permettant ou non aux atomes de métal d’atteindre l’élément résonant. Afin d’intégrer les microrésonateurs et micromasques, deux techniques de re-surfaçage a basses température ont été développées\ud The topic of this thesis is to introduce the use of microsystems as microtools for surface micro/nano-patterning. Designs and fabrications of multiples layers of integrated shadow masks, repositionable while evaporated particles or etching agents are transmitted on the substrate surface result into tri-dimensional structuring at the micro/nanoscale, without the need for nanolithography. \ud The selective patterning technique is then applied to individual high-Q resonator tuning. Two low-temperature planarization processes are presented and utilized in order to allow surface-micromachining of repositionable microshutters on the microresonators. By selectively controlling the amount of material deposited at the surface of each resonator, individual frequency tuning is achieved in-situ and in real time. Large frequency shifts with fine resolution are demonstrated. The introduced patterning method is then applicable to surface micro/nanostructuring or/and microsystems enhancements\u

    Microelectromechanical Systems and Devices

    Get PDF
    The advances of microelectromechanical systems (MEMS) and devices have been instrumental in the demonstration of new devices and applications, and even in the creation of new fields of research and development: bioMEMS, actuators, microfluidic devices, RF and optical MEMS. Experience indicates a need for MEMS book covering these materials as well as the most important process steps in bulk micro-machining and modeling. We are very pleased to present this book that contains 18 chapters, written by the experts in the field of MEMS. These chapters are groups into four broad sections of BioMEMS Devices, MEMS characterization and micromachining, RF and Optical MEMS, and MEMS based Actuators. The book starts with the emerging field of bioMEMS, including MEMS coil for retinal prostheses, DNA extraction by micro/bio-fluidics devices and acoustic biosensors. MEMS characterization, micromachining, macromodels, RF and Optical MEMS switches are discussed in next sections. The book concludes with the emphasis on MEMS based actuators
    corecore