8,481 research outputs found

    One-Dimensional Navier-Stokes Finite Element Flow Model

    Full text link
    This technical report documents the theoretical, computational, and practical aspects of the one-dimensional Navier-Stokes finite element flow model. The document is particularly useful to those who are interested in implementing, validating and utilizing this relatively-simple and widely-used model.Comment: 46 pages, 1 tabl

    Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries

    Get PDF
    The simulation of blood flow and pressure in arteries requires outflow boundary conditions that incorporate models of downstream domains. We previously described a coupled multidomain method to couple analytical models of the downstream domains with 3D numerical models of the upstream vasculature. This prior work either included pure resistance boundary conditions or impedance boundary conditions based on assumed periodicity of the solution. However, flow and pressure in arteries are not necessarily periodic in time due to heart rate variability, respiration, complex transitional flow or acute physiological changes. We present herein an approach for prescribing lumped parameter outflow boundary conditions that accommodate transient phenomena. We have applied this method to compute haemodynamic quantities in different physiologically relevant cardiovascular models, including patient-specific examples, to study non-periodic flow phenomena often observed in normal subjects and in patients with acquired or congenital cardiovascular disease. The relevance of using boundary conditions that accommodate transient phenomena compared with boundary conditions that assume periodicity of the solution is discussed

    A structural approach including the behavior of collagen cross-links to model patient-specific human carotid arteries

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10439-014-0995-7The objective of this work is to develop a remodeling model for biological matter coupling two different processes in a 3D framework: reorientation of the preferential direction of a given fibered structure and reorientation of the fibrils or filaments that make up such a structure. This work uses the microsphere-based approach to take into account the micro mechanics involved in biological fibered structures regarding both their passive behavior and the reorientation of their micro constituents. Moreover, the macro behavior of the material as a whole is obtained by means of homogenizing the underlying micro response. We associate the orientation space of the integration directions to the physical space of micro-fibrils. To approximate the directional distribution of the fibrils within each fiber bundle, a Bingham probability orientation density function is introduced into the Helmholtz energy function. With all these assumptions, the problem is studied from an energetic point of view, describing the dissipation inherent to remodeling processes, and the evolution equations for both reorientations (change in preferential direction of the network and change in shape of the fibril distribution) re obtained. The model is included in a finite element code which allows computing different geometries and boundary value problems. This results in a complete methodology for characterizing the reorientation evolution of different fibered biological structures, such as cells. Our results show remodeling of fibered structures in two different scales, presenting a qualitatively good agreement with experimental findings in cell mechanics. Hierarchical structures align in the direction of the maximum principal direction of the considered stimulus and narrow in the perpendicular direction. The dissipation rates follows predictable trends although there are no experimental findings to date for comparison. The incorporation of metabolic processes and an insight into cell-oriented mechano-sensing processes can help to overcome the limitations involved.Peer ReviewedPostprint (author's final draft

    A New Approach to Model Confined Suspensions Flows in Complex Networks: Application to Blood Flow

    Get PDF
    The modeling of blood flows confined in micro-channels or micro-capillary beds depends on the interactions between the cell-phase, plasma and the complex geometry of the network. In the case of capillaries or channels having a high aspect ratio (their longitudinal size is much larger than their transverse one), this modeling is much simplified from the use of a continuous description of fluid viscosity as previously proposed in the literature. Phase separation or plasma skimming effect is a supplementary mechanism responsible for the relative distribution of the red blood cell’s volume density in each branch of a given bifur- cation. Different models have already been proposed to connect this effect to the various hydrodynamics and geometrical parameters at each bifurcation. We discuss the advantages and drawbacks of these models and compare them to an alternative approach for modeling phase distribution in complex channels networks. The main novelty of this new formulation is to show that albeit all the previous approaches seek for a local origin of the phase segre- gation phenomenon, it can arise from a global non-local and nonlinear structuration of the flow inside the network. This new approach describes how elementary conservation laws are sufficient principles (rather than the complex arametric models previously proposed) to provide non local phase separation. Spatial variations of the hematocrit field thus result from the topological complexity of the network as well as nonlinearities arising from solving a new free boundary problem associated with the flux and mass conservation. This network model approach could apply to model blood flow distribution either on artificial micro-models, micro-fluidic networks, or realistic reconstruction of biological micro-vascular networks

    Impaired coronary blood flow at higher heart rates during atrial fibrillation: investigation via multiscale modelling

    Get PDF
    Background. Different mechanisms have been proposed to relate atrial fibrillation (AF) and coronary flow impairment, even in absence of relevant coronary artery disease (CAD). However, the underlying hemodynamics remains unclear. Aim of the present work is to computationally explore whether and to what extent ventricular rate during AF affects the coronary perfusion. Methods. AF is simulated at different ventricular rates (50, 70, 90, 110, 130 bpm) through a 0D-1D multiscale validated model, which combines the left heart-arterial tree together with the coronary circulation. Artificially-built RR stochastic extraction mimics the \emph{in vivo} beating features. All the hemodynamic parameters computed are based on the left anterior descending (LAD) artery and account for the waveform, amplitude and perfusion of the coronary blood flow. Results. Alterations of the coronary hemodynamics are found to be associated either to the heart rate increase, which strongly modifies waveform and amplitude of the LAD flow rate, and to the beat-to-beat variability. The latter is overall amplified in the coronary circulation as HR grows, even though the input RR variability is kept constant at all HRs. Conclusions. Higher ventricular rate during AF exerts an overall coronary blood flow impairment and imbalance of the myocardial oxygen supply-demand ratio. The combined increase of heart rate and higher AF-induced hemodynamic variability lead to a coronary perfusion impairment exceeding 90-110 bpm in AF. Moreover, it is found that coronary perfusion pressure (CPP) is no longer a good measure of the myocardial perfusion for HR higher than 90 bpm.Comment: 8 pages, 5 figures, 3 table

    Aerospace medicine and biology. A continuing bibliography with indexes, supplement 206, May 1980

    Get PDF
    This bibliography lists 169 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1980

    Aortic Wave Dynamics and Its Influence on Left Ventricular Workload

    Get PDF
    The pumping mechanism of the heart is pulsatile, so the heart generates pulsatile flow that enters into the compliant aorta in the form of pressure and flow waves. We hypothesized that there exists a specific heart rate at which the external left ventricular (LV) power is minimized. To test this hypothesis, we used a computational model to explore the effects of heart rate (HR) and aortic rigidity on left ventricular (LV) power requirement. While both mean and pulsatile parts of the pressure play an important role in LV power requirement elevation, at higher rigidities the effect of pulsatility becomes more dominant. For any given aortic rigidity, there exists an optimum HR that minimizes the LV power requirement at a given cardiac output. The optimum HR shifts to higher values as the aorta becomes more rigid. To conclude, there is an optimum condition for aortic waves that minimizes the LV pulsatile load and consequently the total LV workload

    A Review of Mathematical Models for the Formation of\ud Vascular Networks

    Get PDF
    Mainly two mechanisms are involved in the formation of blood vasculature: vasculogenesis and angiogenesis. The former consists of the formation of a capillary-like network from either a dispersed or a monolayered population of endothelial cells, reproducible also in vitro by specific experimental assays. The latter consists of the sprouting of new vessels from an existing capillary or post-capillary venule. Similar phenomena are also involved in the formation of the lymphatic system through a process generally called lymphangiogenesis.\ud \ud A number of mathematical approaches have analysed these phenomena. This paper reviews the different modelling procedures, with a special emphasis on their ability to reproduce the biological system and to predict measured quantities which describe the overall processes. A comparison between the different methods is also made, highlighting their specific features

    The LifeV library: engineering mathematics beyond the proof of concept

    Get PDF
    LifeV is a library for the finite element (FE) solution of partial differential equations in one, two, and three dimensions. It is written in C++ and designed to run on diverse parallel architectures, including cloud and high performance computing facilities. In spite of its academic research nature, meaning a library for the development and testing of new methods, one distinguishing feature of LifeV is its use on real world problems and it is intended to provide a tool for many engineering applications. It has been actually used in computational hemodynamics, including cardiac mechanics and fluid-structure interaction problems, in porous media, ice sheets dynamics for both forward and inverse problems. In this paper we give a short overview of the features of LifeV and its coding paradigms on simple problems. The main focus is on the parallel environment which is mainly driven by domain decomposition methods and based on external libraries such as MPI, the Trilinos project, HDF5 and ParMetis. Dedicated to the memory of Fausto Saleri.Comment: Review of the LifeV Finite Element librar
    corecore