427 research outputs found

    Steklov Spectral Geometry for Extrinsic Shape Analysis

    Full text link
    We propose using the Dirichlet-to-Neumann operator as an extrinsic alternative to the Laplacian for spectral geometry processing and shape analysis. Intrinsic approaches, usually based on the Laplace-Beltrami operator, cannot capture the spatial embedding of a shape up to rigid motion, and many previous extrinsic methods lack theoretical justification. Instead, we consider the Steklov eigenvalue problem, computing the spectrum of the Dirichlet-to-Neumann operator of a surface bounding a volume. A remarkable property of this operator is that it completely encodes volumetric geometry. We use the boundary element method (BEM) to discretize the operator, accelerated by hierarchical numerical schemes and preconditioning; this pipeline allows us to solve eigenvalue and linear problems on large-scale meshes despite the density of the Dirichlet-to-Neumann discretization. We further demonstrate that our operators naturally fit into existing frameworks for geometry processing, making a shift from intrinsic to extrinsic geometry as simple as substituting the Laplace-Beltrami operator with the Dirichlet-to-Neumann operator.Comment: Additional experiments adde

    A Statistical Toolbox For Mining And Modeling Spatial Data

    Get PDF
    Most data mining projects in spatial economics start with an evaluation of a set of attribute variables on a sample of spatial entities, looking for the existence and strength of spatial autocorrelation, based on the Moran’s and the Geary’s coefficients, the adequacy of which is rarely challenged, despite the fact that when reporting on their properties, many users seem likely to make mistakes and to foster confusion. My paper begins by a critical appraisal of the classical definition and rational of these indices. I argue that while intuitively founded, they are plagued by an inconsistency in their conception. Then, I propose a principled small change leading to corrected spatial autocorrelation coefficients, which strongly simplifies their relationship, and opens the way to an augmented toolbox of statistical methods of dimension reduction and data visualization, also useful for modeling purposes. A second section presents a formal framework, adapted from recent work in statistical learning, which gives theoretical support to our definition of corrected spatial autocorrelation coefficients. More specifically, the multivariate data mining methods presented here, are easily implementable on the existing (free) software, yield methods useful to exploit the proposed corrections in spatial data analysis practice, and, from a mathematical point of view, whose asymptotic behavior, already studied in a series of papers by Belkin & Niyogi, suggests that they own qualities of robustness and a limited sensitivity to the Modifiable Areal Unit Problem (MAUP), valuable in exploratory spatial data analysis

    Free-boundary conformal parameterization of point clouds

    Full text link
    With the advancement in 3D scanning technology, there has been a surge of interest in the use of point clouds in science and engineering. To facilitate the computations and analyses of point clouds, prior works have considered parameterizing them onto some simple planar domains with a fixed boundary shape such as a unit circle or a rectangle. However, the geometry of the fixed shape may lead to some undesirable distortion in the parameterization. It is therefore more natural to consider free-boundary conformal parameterizations of point clouds, which minimize the local geometric distortion of the mapping without constraining the overall shape. In this work, we develop a free-boundary conformal parameterization method for disk-type point clouds, which involves a novel approximation scheme of the point cloud Laplacian with accumulated cotangent weights together with a special treatment at the boundary points. With the aid of the free-boundary conformal parameterization, high-quality point cloud meshing can be easily achieved. Furthermore, we show that using the idea of conformal welding in complex analysis, the point cloud conformal parameterization can be computed in a divide-and-conquer manner. Experimental results are presented to demonstrate the effectiveness of the proposed method

    Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds

    Full text link
    The Euclidean scattering transform was introduced nearly a decade ago to improve the mathematical understanding of convolutional neural networks. Inspired by recent interest in geometric deep learning, which aims to generalize convolutional neural networks to manifold and graph-structured domains, we define a geometric scattering transform on manifolds. Similar to the Euclidean scattering transform, the geometric scattering transform is based on a cascade of wavelet filters and pointwise nonlinearities. It is invariant to local isometries and stable to certain types of diffeomorphisms. Empirical results demonstrate its utility on several geometric learning tasks. Our results generalize the deformation stability and local translation invariance of Euclidean scattering, and demonstrate the importance of linking the used filter structures to the underlying geometry of the data.Comment: 35 pages; 3 figures; 2 tables; v3: Revisions based on reviewer comment
    corecore