416 research outputs found

    Navigable networks as Nash equilibria of navigation games

    Get PDF
    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network

    visone - Software for the Analysis and Visualization of Social Networks

    Get PDF
    We present the software tool visone which combines graph-theoretic methods for the analysis of social networks with tailored means of visualization. Our main contribution is the design of novel graph-layout algorithms which accurately reflect computed analyses results in well-arranged drawings of the networks under consideration. Besides this, we give a detailed description of the design of the software tool and the provided analysis methods

    Jointly Optimizing Placement and Inference for Beacon-based Localization

    Full text link
    The ability of robots to estimate their location is crucial for a wide variety of autonomous operations. In settings where GPS is unavailable, measurements of transmissions from fixed beacons provide an effective means of estimating a robot's location as it navigates. The accuracy of such a beacon-based localization system depends both on how beacons are distributed in the environment, and how the robot's location is inferred based on noisy and potentially ambiguous measurements. We propose an approach for making these design decisions automatically and without expert supervision, by explicitly searching for the placement and inference strategies that, together, are optimal for a given environment. Since this search is computationally expensive, our approach encodes beacon placement as a differential neural layer that interfaces with a neural network for inference. This formulation allows us to employ standard techniques for training neural networks to carry out the joint optimization. We evaluate this approach on a variety of environments and settings, and find that it is able to discover designs that enable high localization accuracy.Comment: Appeared at 2017 International Conference on Intelligent Robots and Systems (IROS

    Adaptive Layout for Interactive Documents

    Get PDF
    This thesis presents a novel approach to create automated layouts for rich illustrative material that could adapt according to the screen size and contextual requirements. The adaption not only considers global layout but also deals with the content and layout adaptation of individual illustrations in the layout. An unique solution has been developed that integrates constraint-based and force-directed techniques to create adaptive grid-based and non-grid layouts. A set of annotation layouts are developed which adapt the annotated illustrations to match the contextual requirements over time

    Creating and navigating social and classroom spaces with gravity

    Get PDF
    Gravity is one the principle forces in the universe, its power always apparent, giving us three-dimensional creatures a constant sense of “up” and “down”. We propose the use of a metric for applying gravity, or similar “pulling” forces, to social environments by weighting and reordering set network structures where links cannot be added, but nodes may be rearranged. We begin by introducing gravity in social networks, describe previous web applications and uses, and then briefly experiment with the metric within a classroom setting. To that point, we describe and design requirements to effectively apply our metric to classrooms, as well as other social spaces. Finally, we assert that by flavoring network structures with our so-called “gravity”, we make those structures inherently more navigable in terms of personality similarity, and perhaps indirectly, communication and learning

    An Algorithmic Framework for Labeling Network Maps

    Full text link
    Drawing network maps automatically comprises two challenging steps, namely laying out the map and placing non-overlapping labels. In this paper we tackle the problem of labeling an already existing network map considering the application of metro maps. We present a flexible and versatile labeling model. Despite its simplicity, we prove that it is NP-complete to label a single line of the network. For a restricted variant of that model, we then introduce an efficient algorithm that optimally labels a single line with respect to a given weighting function. Based on that algorithm, we present a general and sophisticated workflow for multiple metro lines, which is experimentally evaluated on real-world metro maps.Comment: Full version of COCOON 2015 pape

    A two-stage design framework for optimal spatial packaging of interconnected fluid-thermal systems

    Get PDF
    Optimal spatial packaging of interconnected subsystems and components with coupled physical (thermal, hydraulic, or electromagnetic) interactions, or SPI2, plays a vital role in the functionality, operation, energy usage, and life cycle of practically all engineered systems, from chips to ships to aircraft. However, the highly nonlinear spatial packaging problem, governed by coupled physical phenomena transferring energy through highly complex and diverse geometric interconnects, has largely resisted automation and quickly exceeds human cognitive abilities at moderate complexity levels. The current state-of-the-art in defining an arrangement of these functionally heterogeneous artifacts still largely relies on human intuition and manual spatial placement, limiting system sophistication and extending design timelines. Spatial packaging involves packing and routing, which are separately challenging NP-hard problems. Therefore, solving the coupled packing and routing (PR) problem simultaneously will require disruptive methods to better address pressing related challenges, such as system volume reduction, interconnect length reduction, ensuring non-intersection, and physics considerations. This dissertation presents a novel automated two-stage sequential design framework to perform simultaneous physics-based packing and routing (PR) optimization of fluid-thermal systems. In Stage 1, unique spatially-feasible topologies (i.e., how interconnects and components pass around each other) are enumerated for given fluid-thermal system architecture. It is important to guarantee a feasible initial graph as lumped-parameter physics analyses may fail if components and/or routing paths intersect. Stage 2 begins with a spatially-feasible layout, and optimizes physics-based system performance with respect to component locations, interconnect paths, and other continuous component or system variables (such as sizing or control). A bar-based design representation enables the use of a differentiable geometric projection method (GPM), where gradient-based optimization is used with finite element analysis. In addition to geometric considerations, this method supports optimization based on system behavior by including physics-based (temperature, fluid pressure, head loss, etc.) objectives and constraints. In other words, stage 1 of the framework supports systematic navigation through discrete topology options utilized as initial designs that are then individually optimized in stage 2 using a continuous gradient-based topology optimization method. Thus, both the discrete and continuous design decisions are made sequentially in this framework. The design framework is successfully demonstrated using different 2D case studies such as a hybrid unmanned aerial vehicle (UAV) system, automotive fuel cell (AFC) packaging system, and other complex multi-loop systems. The 3D problem is significantly more challenging than the 2D problem due to vastly more expansive design space and potential features. A review of state-of-the-art methods, challenges, existing gaps, and opportunities are presented for the optimal design of the 3D PR problem. Stage 1 of the framework has been investigated thoroughly for 3D systems in this dissertation. An efficient design framework to represent and enumerate 3D system spatial topologies for a given system architecture is demonstrated using braid and spatial graph theories. After enumeration, the unique spatial topologies are identified by calculating the Yamada polynomials of all the generated spatial graphs. Spatial topologies that have the same Yamada polynomial are categorized together into equivalent classes. Finally, CAD-based 3D system models are generated from these unique topology classes. These 3D models can be utilized in stage 2 as initial designs for 3D multi-physics PR optimization. Current limitations and significantly impactful future directions for this work are outlined. In summary, this novel design automation framework integrates several elements together as a foundation toward a more comprehensive solution of 3D real-world packing and routing problems with both geometric and physics considerations

    Doctor of Philosophy

    Get PDF
    dissertationA broad range of applications capture dynamic data at an unprecedented scale. Independent of the application area, finding intuitive ways to understand the dynamic aspects of these increasingly large data sets remains an interesting and, to some extent, unsolved research problem. Generically, dynamic data sets can be described by some, often hierarchical, notion of feature of interest that exists at each moment in time, and those features evolve across time. Consequently, exploring the evolution of these features is considered to be one natural way of studying these data sets. Usually, this process entails the ability to: 1) define and extract features from each time step in the data set; 2) find their correspondences over time; and 3) analyze their evolution across time. However, due to the large data sizes, visualizing the evolution of features in a comprehensible manner and performing interactive changes are challenging. Furthermore, feature evolution details are often unmanageably large and complex, making it difficult to identify the temporal trends in the underlying data. Additionally, many existing approaches develop these components in a specialized and standalone manner, thus failing to address the general task of understanding feature evolution across time. This dissertation demonstrates that interactive exploration of feature evolution can be achieved in a non-domain-specific manner so that it can be applied across a wide variety of application domains. In particular, a novel generic visualization and analysis environment that couples a multiresolution unified spatiotemporal representation of features with progressive layout and visualization strategies for studying the feature evolution across time is introduced. This flexible framework enables on-the-fly changes to feature definitions, their correspondences, and other arbitrary attributes while providing an interactive view of the resulting feature evolution details. Furthermore, to reduce the visual complexity within the feature evolution details, several subselection-based and localized, per-feature parameter value-based strategies are also enabled. The utility and generality of this framework is demonstrated by using several large-scale dynamic data sets
    • …
    corecore