5,250 research outputs found

    Geometric loss functions for camera pose regression with deep learning

    Get PDF
    Deep learning has shown to be effective for robust and real-time monocular image relocalisation. In particular, PoseNet is a deep convolutional neural network which learns to regress the 6-DOF camera pose from a single image. It learns to localize using high level features and is robust to difficult lighting, motion blur and unknown camera intrinsics, where point based SIFT registration fails. However, it was trained using a naive loss function, with hyper-parameters which require expensive tuning. In this paper, we give the problem a more fundamental theoretical treatment. We explore a number of novel loss functions for learning camera pose which are based on geometry and scene reprojection error. Additionally we show how to automatically learn an optimal weighting to simultaneously regress position and orientation. By leveraging geometry, we demonstrate that our technique significantly improves PoseNet's performance across datasets ranging from indoor rooms to a small city

    Scene Coordinate Regression with Angle-Based Reprojection Loss for Camera Relocalization

    Get PDF
    Image-based camera relocalization is an important problem in computer vision and robotics. Recent works utilize convolutional neural networks (CNNs) to regress for pixels in a query image their corresponding 3D world coordinates in the scene. The final pose is then solved via a RANSAC-based optimization scheme using the predicted coordinates. Usually, the CNN is trained with ground truth scene coordinates, but it has also been shown that the network can discover 3D scene geometry automatically by minimizing single-view reprojection loss. However, due to the deficiencies of the reprojection loss, the network needs to be carefully initialized. In this paper, we present a new angle-based reprojection loss, which resolves the issues of the original reprojection loss. With this new loss function, the network can be trained without careful initialization, and the system achieves more accurate results. The new loss also enables us to utilize available multi-view constraints, which further improve performance.Comment: ECCV 2018 Workshop (Geometry Meets Deep Learning

    Spherical Regression: Learning Viewpoints, Surface Normals and 3D Rotations on n-Spheres

    Get PDF
    Many computer vision challenges require continuous outputs, but tend to be solved by discrete classification. The reason is classification's natural containment within a probability nn-simplex, as defined by the popular softmax activation function. Regular regression lacks such a closed geometry, leading to unstable training and convergence to suboptimal local minima. Starting from this insight we revisit regression in convolutional neural networks. We observe many continuous output problems in computer vision are naturally contained in closed geometrical manifolds, like the Euler angles in viewpoint estimation or the normals in surface normal estimation. A natural framework for posing such continuous output problems are nn-spheres, which are naturally closed geometric manifolds defined in the R(n+1)\mathbb{R}^{(n+1)} space. By introducing a spherical exponential mapping on nn-spheres at the regression output, we obtain well-behaved gradients, leading to stable training. We show how our spherical regression can be utilized for several computer vision challenges, specifically viewpoint estimation, surface normal estimation and 3D rotation estimation. For all these problems our experiments demonstrate the benefit of spherical regression. All paper resources are available at https://github.com/leoshine/Spherical_Regression.Comment: CVPR 2019 camera read
    • …
    corecore