94 research outputs found

    CSM-430: Geometric Landscape of Homologous Crossover for Syntactic Trees

    Get PDF
    Geometric crossover and geometric mutation are representation-independent operators that are welldefined once a notion of distance over the solution space is defined. They were obtained as generalizations of genetic operators for binary strings and real vectors. Our geometric framework has been successfully applied to the permutation representation leading to a clarification and a natural unification of this domain. The relationship between search space, distances and genetic operators for syntactic trees is little understood. In this paper we apply the geometric framework to the syntactic tree representation and show how the wellknown structural distance is naturally associated with homologous crossover and subtree mutation

    A Mathematical Unification of Geometric Crossovers Defined on Phenotype Space

    Get PDF
    Geometric crossover is a representation-independent definition of crossover based on the distance of the search space interpreted as a metric space. It generalizes the traditional crossover for binary strings and other important recombination operators for the most frequently used representations. Using a distance tailored to the problem at hand, the abstract definition of crossover can be used to design new problem specific crossovers that embed problem knowledge in the search. This paper is motivated by the fact that genotype-phenotype mapping can be theoretically interpreted using the concept of quotient space in mathematics. In this paper, we study a metric transformation, the quotient metric space, that gives rise to the notion of quotient geometric crossover. This turns out to be a very versatile notion. We give many example applications of the quotient geometric crossover

    CSM-467: Quotient Geometric Crossovers

    Get PDF
    Geometric crossover is a representation-independent definition of crossover based on the distance of the search space interpreted as a metric space. It generalizes the traditional crossover for binary strings and other important recombination operators for the most frequently used representations. Using a distance tailored to the problem at hand, the abstract definition of crossover can be used to design new problem specific crossovers that embed problem knowledge in the search. In previous work we have started studying how metric transformations of the distance associated with geometric crossover affect the original geometric crossover. In particular, we focused on the product of metric spaces. This metric transformation gives rise to the notion of product geometric crossover that allows to build new geometric crossovers combining pre-existing geometric crossovers in a simple way. In this paper, we study another metric transformation, the quotient metric space, that gives rise to the notion of quotient geometric crossover. This turns out to be a very versatile notion. We give many examples of application of the quotient geometric crossover

    Geometric particle swarm optimization for the sudoku puzzle

    Get PDF
    Geometric particle swarm optimization (GPSO) is a recently introduced generalization of traditional particle swarm optimization (PSO) that applies to all combinatorial spaces. The aim of this paper is to demonstrate the applicability of GPSO to non-trivial combinatorial spaces. The Sudoku puzzle is a perfect candidate to test new algorithmic ideas because it is entertaining and instructive as well as a nontrivial constrained combinatorial problem. We apply GPSO to solve the sudoku puzzle

    Mathematical Interpretation between Genotype and Phenotype Spaces and Induced Geometric Crossovers

    Get PDF
    In this paper, we present that genotype-phenotype mapping can be theoretically interpreted using the concept of quotient space in mathematics. Quotient space can be considered as mathematically-defined phenotype space in the evolutionary computation theory. The quotient geometric crossover has the effect of reducing the search space actually searched by geometric crossover, and it introduces problem knowledge in the search by using a distance better tailored to the specific solution interpretation. Quotient geometric crossovers are directly applied to the genotype space but they have the effect of the crossovers performed on phenotype space. We give many example applications of the quotient geometric crossover

    Runtime analysis of mutation-based geometric semantic genetic programming on boolean functions.

    Get PDF
    Geometric Semantic Genetic Programming (GSGP) is a recently introduced form of Genetic Programming (GP), rooted in a geometric theory of representations, that searches directly the semantic space of functions/programs, rather than the space of their syntactic representations (e.g., trees) as in traditional GP. Remarkably, the fitness landscape seen by GSGP is always – for any domain and for any problem – unimodal with a linear slope by construction. This has two important consequences: (i) it makes the search for the optimum much easier than for traditional GP; (ii) it opens the way to analyse theoretically in a easy manner the optimisation time of GSGP in a general setting. The runtime analysis of GP has been very hard to tackle, and only simplified forms of GP on specific, unrealistic problems have been studied so far. We present a runtime analysis of GSGP with various types of mutations on the class of all Boolean functionsThe authors are grateful to Dirk Sudholt for helping check the proofs. Alberto Moraglio was supported by EPSRC grant EP/I010297/

    A Study of Geometric Semantic Genetic Programming with Linear Scaling

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceMachine Learning (ML) is a scientific discipline that endeavors to enable computers to learn without the need for explicit programming. Evolutionary Algorithms (EAs), a subset of ML algorithms, mimic Darwin’s Theory of Evolution by using natural selection mechanisms (i.e., survival of the fittest) to evolve a group of individuals (i.e., possible solutions to a given problem). Genetic Programming (GP) is the most recent type of EA and it evolves computer programs (i.e., individuals) to map a set of input data into known expected outputs. Geometric Semantic Genetic Programming (GSGP) extends this concept by allowing individuals to evolve and vary in the semantic space, where the output vectors are located, rather than being constrained by syntaxbased structures. Linear Scaling (LS) is a method that was introduced to facilitate the task of GP of searching for the best function matching a set of known data. GSGP and LS have both, independently, shown the ability to outperform standard GP for symbolic regression. GSGP uses Geometric Semantic Operators (GSOs), different from the standard ones, without altering the fitness, while LS modifies the fitness without altering the genetic operators. To the best of our knowledge, there has been no prior utilization of the combined methodology of GSGP and LS for classification problems. Furthermore, despite the fact that they have been used together in one practical regression application, a methodological evaluation of the advantages and disadvantages of integrating these methods for regression or classification problems has never been performed. In this dissertation, a study of a system that integrates both GSGP and LS (GSGP-LS) is presented. The performance of the proposed method, GSGPLS, was tested on six hand-tailored regression benchmarks, nine real-life regression problems and three real-life classification problems. The obtained results indicate that GSGP-LS outperforms GSGP in the majority of the cases, confirming the expected benefit of this integration. However, for some particularly hard regression datasets, GSGP-LS overfits training data, being outperformed by GSGP on unseen data. This contradicts the idea that LS is always beneficial for GP, warning the practitioners about its risk of overfitting in some specific cases.A Aprendizagem Automática (AA) é uma disciplina científica que se esforça por permitir que os computadores aprendam sem a necessidade de programação explícita. Algoritmos Evolutivos (AE),um subconjunto de algoritmos de ML, mimetizam a Teoria da Evolução de Darwin, usando a seleção natural e mecanismos de "sobrevivência dos mais aptos"para evoluir um grupo de indivíduos (ou seja, possíveis soluções para um problema dado). A Programação Genética (PG) é um processo algorítmico que evolui programas de computador (ou indivíduos) para ligar características de entrada e saída. A Programação Genética em Geometria Semântica (PGGS) estende esse conceito permitindo que os indivíduos evoluam e variem no espaço semântico, onde os vetores de saída estão localizados, em vez de serem limitados por estruturas baseadas em sintaxe. A Escala Linear (EL) é um método introduzido para facilitar a tarefa da PG de procurar a melhor função que corresponda a um conjunto de dados conhecidos. Tanto a PGGS quanto a EL demonstraram, independentemente, a capacidade de superar a PG padrão para regressão simbólica. A PGGS usa Operadores Semânticos Geométricos (OSGs), diferentes dos padrões, sem alterar o fitness, enquanto a EL modifica o fitness sem alterar os operadores genéticos. Até onde sabemos, não houve utilização prévia da metodologia combinada de PGGS e EL para problemas de classificação. Além disso, apesar de terem sido usados juntos em uma aplicação prática de regressão, nunca foi realizada uma avaliação metodológica das vantagens e desvantagens da integração desses métodos para problemas de regressão ou classificação. Nesta dissertação, é apresentado um estudo de um sistema que integra tanto a PGGS quanto a EL (PGGSEL). O desempenho do método proposto, PGGS-EL, foi testado em seis benchmarks de regressão personalizados, nove problemas de regressão da vida real e três problemas de classificação da vida real. Os resultados obtidos indicam que o PGGS-EL supera o PGGS na maioria dos casos, confirmando o benefício esperado desta integração. No entanto, para alguns conjuntos de dados de regressão particularmente difíceis, o PGGS-EL faz overfit aos dados de treino, obtendo piores resultados em comparação com PGGS em dados não vistos. Isso contradiz a ideia de que a EL é sempre benéfica para a PG, alertando os praticantes sobre o risco de overfitting em alguns casos específicos

    Semantic Building Blocks in Genetic Programming

    Get PDF
    In this paper we present a new mechanism for studying the impact of subtree crossover in terms of semantic building blocks. This approach allows us to completely and compactly describe the semantic action of crossover, and provide insight into what does (or doesn’t) make crossover effective. Our results make it clear that a very high proportion of crossover events (typically over 75% in our experiments) are guaranteed to perform no immediately useful search in the semantic space. Our findings also indicate a strong correlation between lack of progress and high proportions of fixed contexts. These results then suggest several new, theoretically grounded, research areas
    corecore