4,527 research outputs found

    Decoupled Sampling-Based Motion Planning for Multiple Autonomous Marine Vehicles

    Get PDF
    There is increasing interest in the deployment and operation of multiple autonomous marine vehicles (AMVs) for a number of challenging scientific and commercial operational mission scenarios. Some of the missions, such as geotechnical surveying and 3D marine habitat mapping, require that a number of heterogeneous vehicles operate simultaneously in small areas, often in close proximity of each other. In these circumstances safety, reliability, and efficient multiple vehicle operation are key ingredients for mission success. Additionally, the deployment and operation of multiple AMVs at sea are extremely costly in terms of the logistics and human resources required for mission supervision, often during extended periods of time. These costs can be greatly minimized by automating the deployment and initial steering of a vehicle fleet to a predetermined configuration, in preparation for the ensuing mission, taking into account operational constraints. This is one of the core issues addressed in the scope of the Widely Scalable Mobile Underwater Sonar Technology project (WiMUST), an EU Horizon 2020 initiative for underwater robotics research. WiMUST uses a team of cooperative autonomous ma- rine robots, some of which towing streamers equipped with hydrophones, acting as intelligent sensing and communicat- ing nodes of a reconfigurable moving acoustic network. In WiMUST, the AMVs maintain a fixed geometric formation through cooperative navigation and motion control. Formation initialization requires that all the AMVs start from scattered positions in the water and maneuver so as to arrive at required target configuration points at the same time in a completely au- tomatic manner. This paper describes the decoupled prioritized vehicle motion planner developed in the scope of WiMUST that, together with an existing system for trajectory tracking, affords a fleet of vehicles the above capabilities, while ensuring inter- vehicle collision and streamer entanglement avoidance. Tests with a fleet of seven marine vehicles show the efficacy of the system planner developed.Peer reviewe

    Control de formación de múltiples vehículos submarinos autónomos empleando técnicas evolutivas

    Get PDF
    Uno de los problemas típicos de coordinación en un sistema multi-agente integrado por Vehículos Submarinos Autónomos (AUVs por sus siglas en ingles) es el control de formación. Dentro de las posibles soluciones se encuentra la estructura de tipo líder - seguidor. Sus principales dificultades se presentan cuando se intenta seguir una formación geométrica o cuando se adicionan o disminuyen vehículos al sistema. Los mencionados problemas motivaron el desarrollo del presente documento en donde se da solución a estos inconvenientes. Se realizó el modelamiento cinemático y dinámico y diseño de un controlador de posición basado en observadores GPI de un AUV. Se realizo un control de formación para múltiples AUVs. La propuesta consiste en tomar la respuesta de consenso (dinámica del replicador (mutador) y calcular la formación geométrica utilizando la matriz Laplaciana compleja. Las simulaciones describen las características del algoritmo de control que puede modificar su respuesta cambiando la mutación y el valor de las frecuencias de las estrategias.Abstract. The formation control for multi-agent system is a typical coordination problem for Autonomous Underwater Vehicles. A traditional method to make formation control for AUVs is the leader-follower structure. The main problems occur when vehicles are added and a geometric shape is maintained, because it causes an increase in the convergence time and generates potential collisions between vehicles. This document describes the parameters for Autonomous Underwater Vehicle, kinematic and dynamic modelling, and design position controller based in GPI observers. The purpose of this thesis was in order to develop a multi-agent Formation Control for multiple Autonomous Underwater Vehicles. The algorithm is based on replicator-mutator dynamic learning and complex Laplacian. Simulations describe the characteristics of the formation control algorithm. The algorithm may modify consensus response by changing the mutation strength and the value of strategies frequency.Maestrí

    Characterization of optical communication in a leader-follower unmanned underwater vehicle formation

    Get PDF
    As part of the research to development an optical communication design of a leader-follower formation between unmanned underwater vehicles (UUVs), this paper presents light field characterization and design configuration of the hardware required to allow the use of distance detection between UUVs. The study specifically is targeting communication between remotely operated vehicles (ROVs). As an initial step in this study, the light field produced from a light source mounted on the leader UUV was empirically characterized and modeled. Based on the light field measurements, a photo-detector array for the follower UUV was designed. Evaluation of the communication algorithms to monitor the UUV’s motion was conducted through underwater experiments in the Ocean Engineering Laboratory at the University of New Hampshire. The optimal spectral range was determined based on the calculation of the diffuse attenuation coefficients by using two different light sources and a spectrometer. The range between the leader and the follower vehicles for a specific water type was determined. In addition, the array design and the communication algorithms were modified according to the results from the light field

    Dynamic Control of Mobile Multirobot Systems: The Cluster Space Formulation

    Get PDF
    The formation control technique called cluster space control promotes simplified specification and monitoring of the motion of mobile multirobot systems of limited size. Previous paper has established the conceptual foundation of this approach and has experimentally verified and validated its use for various systems implementing kinematic controllers. In this paper, we briefly review the definition of the cluster space framework and introduce a new cluster space dynamic model. This model represents the dynamics of the formation as a whole as a function of the dynamics of the member robots. Given this model, generalized cluster space forces can be applied to the formation, and a Jacobian transpose controller can be implemented to transform cluster space compensation forces into robot-level forces to be applied to the robots in the formation. Then, a nonlinear model-based partition controller is proposed. This controller cancels out the formation dynamics and effectively decouples the cluster space variables. Computer simulations and experimental results using three autonomous surface vessels and four land rovers show the effectiveness of the approach. Finally, sensitivity to errors in the estimation of cluster model parameters is analyzed.Fil: Mas, Ignacio Agustin. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kitts, Christopher. Santa Clara University; Estados Unido

    Nonlinear H ∞ optimal control scheme for an underwater vehicle with regional function formulation

    Get PDF
    A conventional region control technique cannot meet the demands for an accurate tracking performance in view of its inability to accommodate highly nonlinear system dynamics, imprecise hydrodynamic coefficients, and external disturbances. In this paper, a robust technique is presented for an Autonomous Underwater Vehicle (AUV) with region tracking function. Within this control scheme, nonlinear H∞ and region based control schemes are used. A Lyapunov-like function is presented for stability analysis of the proposed control law. Numerical simulations are presented to demonstrate the performance of the proposed tracking control of the AUV. It is shown that the proposed control law is robust against parameter uncertainties, external disturbances, and nonlinearities and it leads to uniform ultimate boundedness of the region tracking error

    Hybrid Maneuver for Gradient Search with Multiple Coordinated AUVs

    Get PDF
    This work presents a hybrid maneuver for gradient search with multiple AUV's. The mission consists in following a gradient field in order to locate the source of a hydrothermal vent or underwater freshwater source. The formation gradient search exploits the environment structuring by the phenomena to be studied. The ingredients for coordination are the payload data collected by each vehicle and their knowledge of the behaviour of other vehicles and detected formation distortions

    A Discrete Geometric Optimal Control Framework for Systems with Symmetries

    Get PDF
    This paper studies the optimal motion control of mechanical systems through a discrete geometric approach. At the core of our formulation is a discrete Lagrange-d’Alembert- Pontryagin variational principle, from which are derived discrete equations of motion that serve as constraints in our optimization framework. We apply this discrete mechanical approach to holonomic systems with symmetries and, as a result, geometric structure and motion invariants are preserved. We illustrate our method by computing optimal trajectories for a simple model of an air vehicle flying through a digital terrain elevation map, and point out some of the numerical benefits that ensue

    Mapping and classification of ecologically sensitive marine habitats using unmanned aerial vehicle (UAV) imagery and object-based image analysis (OBIA)

    Get PDF
    Nowadays, emerging technologies, such as long-range transmitters, increasingly miniaturized components for positioning, and enhanced imaging sensors, have led to an upsurge in the availability of new ecological applications for remote sensing based on unmanned aerial vehicles (UAVs), sometimes referred to as “drones”. In fact, structure-from-motion (SfM) photogrammetry coupled with imagery acquired by UAVs offers a rapid and inexpensive tool to produce high-resolution orthomosaics, giving ecologists a new way for responsive, timely, and cost-effective monitoring of ecological processes. Here, we adopted a lightweight quadcopter as an aerial survey tool and object-based image analysis (OBIA) workflow to demonstrate the strength of such methods in producing very high spatial resolution maps of sensitive marine habitats. Therefore, three different coastal environments were mapped using the autonomous flight capability of a lightweight UAV equipped with a fully stabilized consumer-grade RGB digital camera. In particular we investigated a Posidonia oceanica seagrass meadow, a rocky coast with nurseries for juvenile fish, and two sandy areas showing biogenic reefs of Sabelleria alveolata. We adopted, for the first time, UAV-based raster thematic maps of these key coastal habitats, produced after OBIA classification, as a new method for fine-scale, low-cost, and time saving characterization of sensitive marine environments which may lead to a more effective and efficient monitoring and management of natural resource
    corecore