2,510 research outputs found

    J. N. Srivastava and experimental design

    No full text
    J. N. Srivastava was a tremendously productive statistical researcher for five decades. He made significant contributions in many areas of statistics, including multivariate analysis and sampling theory. A constant throughout his career was the attention he gave to problems in discrete experimental design, where many of his best known publications are found. This paper focuses on his design work, tracing its progression, recounting his key contributions and ideas, and assessing its continuing impact. A synopsis of his design-related editorial and organizational roles is also included

    Applications of finite geometries to designs and codes

    Get PDF
    This dissertation concerns the intersection of three areas of discrete mathematics: finite geometries, design theory, and coding theory. The central theme is the power of finite geometry designs, which are constructed from the points and t-dimensional subspaces of a projective or affine geometry. We use these designs to construct and analyze combinatorial objects which inherit their best properties from these geometric structures. A central question in the study of finite geometry designs is Hamada’s conjecture, which proposes that finite geometry designs are the unique designs with minimum p-rank among all designs with the same parameters. In this dissertation, we will examine several questions related to Hamada’s conjecture, including the existence of counterexamples. We will also study the applicability of certain decoding methods to known counterexamples. We begin by constructing an infinite family of counterexamples to Hamada’s conjecture. These designs are the first infinite class of counterexamples for the affine case of Hamada’s conjecture. We further demonstrate how these designs, along with the projective polarity designs of Jungnickel and Tonchev, admit majority-logic decoding schemes. The codes obtained from these polarity designs attain error-correcting performance which is, in certain cases, equal to that of the finite geometry designs from which they are derived. This further demonstrates the highly geometric structure maintained by these designs. Finite geometries also help us construct several types of quantum error-correcting codes. We use relatives of finite geometry designs to construct infinite families of q-ary quantum stabilizer codes. We also construct entanglement-assisted quantum error-correcting codes (EAQECCs) which admit a particularly efficient and effective error-correcting scheme, while also providing the first general method for constructing these quantum codes with known parameters and desirable properties. Finite geometry designs are used to give exceptional examples of these codes

    Relations among partitions

    Get PDF
    Combinatorialists often consider a balanced incomplete-block design to consist of a set of points, a set of blocks, and an incidence relation between them which satisfies certain conditions. To a statistician, such a design is a set of experimental units with two partitions, one into blocks and the other into treatments: it is the relation between these two partitions which gives the design its properties. The most common binary relations between partitions that occur in statistics are refinement, orthogonality and balance. When there are more than two partitions, the binary relations may not suffice to give all the properties of the system. I shall survey work in this area, including designs such as double Youden rectangles.PostprintPeer reviewe

    Entanglement-assisted quantum low-density parity-check codes

    Get PDF
    This paper develops a general method for constructing entanglement-assisted quantum low-density parity-check (LDPC) codes, which is based on combinatorial design theory. Explicit constructions are given for entanglement-assisted quantum error-correcting codes (EAQECCs) with many desirable properties. These properties include the requirement of only one initial entanglement bit, high error correction performance, high rates, and low decoding complexity. The proposed method produces infinitely many new codes with a wide variety of parameters and entanglement requirements. Our framework encompasses various codes including the previously known entanglement-assisted quantum LDPC codes having the best error correction performance and many new codes with better block error rates in simulations over the depolarizing channel. We also determine important parameters of several well-known classes of quantum and classical LDPC codes for previously unsettled cases.Comment: 20 pages, 5 figures. Final version appearing in Physical Review

    Variance-distance relationships in agricultural field plot experiments

    Get PDF

    Almost-Fisher families

    Full text link
    A classic theorem in combinatorial design theory is Fisher's inequality, which states that a family F\mathcal F of subsets of [n][n] with all pairwise intersections of size λ\lambda can have at most nn non-empty sets. One may weaken the condition by requiring that for every set in F\mathcal F, all but at most kk of its pairwise intersections have size λ\lambda. We call such families kk-almost λ\lambda-Fisher. Vu was the first to study the maximum size of such families, proving that for k=1k=1 the largest family has 2n22n-2 sets, and characterising when equality is attained. We substantially refine his result, showing how the size of the maximum family depends on λ\lambda. In particular we prove that for small λ\lambda one essentially recovers Fisher's bound. We also solve the next open case of k=2k=2 and obtain the first non-trivial upper bound for general kk.Comment: 27 pages (incluiding one appendix
    corecore