463 research outputs found

    Development of an R package to learn supervised classification techniques

    Get PDF
    This TFG aims to develop a custom R package for teaching supervised classification algorithms, starting with the identification of requirements, including algorithms, data structures, and libraries. A strong theoretical foundation is essential for effective package design. Documentation will explain each function’s purpose, accompanied by necessary paperwork. The package will include R scripts and data files in organized directories, complemented by a user manual for easy installation and usage, even for beginners. Built entirely from scratch without external dependencies, it’s optimized for accuracy and performance. In conclusion, this TFG provides a roadmap for creating an R package to teach supervised classification algorithms, benefiting researchers and practitioners dealing with real-world challenges.Grado en Ingeniería Informátic

    Machine learning for the sustainable energy transition: a data-driven perspective along the value chain from manufacturing to energy conversion

    Get PDF
    According to the special report Global Warming of 1.5 °C of the IPCC, climate action is not only necessary but more than ever urgent. The world is witnessing rising sea levels, heat waves, events of flooding, droughts, and desertification resulting in the loss of lives and damage to livelihoods, especially in countries of the Global South. To mitigate climate change and commit to the Paris agreement, it is of the uttermost importance to reduce greenhouse gas emissions coming from the most emitting sector, namely the energy sector. To this end, large-scale penetration of renewable energy systems into the energy market is crucial for the energy transition toward a sustainable future by replacing fossil fuels and improving access to energy with socio-economic benefits. With the advent of Industry 4.0, Internet of Things technologies have been increasingly applied to the energy sector introducing the concept of smart grid or, more in general, Internet of Energy. These paradigms are steering the energy sector towards more efficient, reliable, flexible, resilient, safe, and sustainable solutions with huge environmental and social potential benefits. To realize these concepts, new information technologies are required, and among the most promising possibilities are Artificial Intelligence and Machine Learning which in many countries have already revolutionized the energy industry. This thesis presents different Machine Learning algorithms and methods for the implementation of new strategies to make renewable energy systems more efficient and reliable. It presents various learning algorithms, highlighting their advantages and limits, and evaluating their application for different tasks in the energy context. In addition, different techniques are presented for the preprocessing and cleaning of time series, nowadays collected by sensor networks mounted on every renewable energy system. With the possibility to install large numbers of sensors that collect vast amounts of time series, it is vital to detect and remove irrelevant, redundant, or noisy features, and alleviate the curse of dimensionality, thus improving the interpretability of predictive models, speeding up their learning process, and enhancing their generalization properties. Therefore, this thesis discussed the importance of dimensionality reduction in sensor networks mounted on renewable energy systems and, to this end, presents two novel unsupervised algorithms. The first approach maps time series in the network domain through visibility graphs and uses a community detection algorithm to identify clusters of similar time series and select representative parameters. This method can group both homogeneous and heterogeneous physical parameters, even when related to different functional areas of a system. The second approach proposes the Combined Predictive Power Score, a method for feature selection with a multivariate formulation that explores multiple sub-sets of expanding variables and identifies the combination of features with the highest predictive power over specified target variables. This method proposes a selection algorithm for the optimal combination of variables that converges to the smallest set of predictors with the highest predictive power. Once the combination of variables is identified, the most relevant parameters in a sensor network can be selected to perform dimensionality reduction. Data-driven methods open the possibility to support strategic decision-making, resulting in a reduction of Operation & Maintenance costs, machine faults, repair stops, and spare parts inventory size. Therefore, this thesis presents two approaches in the context of predictive maintenance to improve the lifetime and efficiency of the equipment, based on anomaly detection algorithms. The first approach proposes an anomaly detection model based on Principal Component Analysis that is robust to false alarms, can isolate anomalous conditions, and can anticipate equipment failures. The second approach has at its core a neural architecture, namely a Graph Convolutional Autoencoder, which models the sensor network as a dynamical functional graph by simultaneously considering the information content of individual sensor measurements (graph node features) and the nonlinear correlations existing between all pairs of sensors (graph edges). The proposed neural architecture can capture hidden anomalies even when the turbine continues to deliver the power requested by the grid and can anticipate equipment failures. Since the model is unsupervised and completely data-driven, this approach can be applied to any wind turbine equipped with a SCADA system. When it comes to renewable energies, the unschedulable uncertainty due to their intermittent nature represents an obstacle to the reliability and stability of energy grids, especially when dealing with large-scale integration. Nevertheless, these challenges can be alleviated if the natural sources or the power output of renewable energy systems can be forecasted accurately, allowing power system operators to plan optimal power management strategies to balance the dispatch between intermittent power generations and the load demand. To this end, this thesis proposes a multi-modal spatio-temporal neural network for multi-horizon wind power forecasting. In particular, the model combines high-resolution Numerical Weather Prediction forecast maps with turbine-level SCADA data and explores how meteorological variables on different spatial scales together with the turbines' internal operating conditions impact wind power forecasts. The world is undergoing a third energy transition with the main goal to tackle global climate change through decarbonization of the energy supply and consumption patterns. This is not only possible thanks to global cooperation and agreements between parties, power generation systems advancements, and Internet of Things and Artificial Intelligence technologies but also necessary to prevent the severe and irreversible consequences of climate change that are threatening life on the planet as we know it. This thesis is intended as a reference for researchers that want to contribute to the sustainable energy transition and are approaching the field of Artificial Intelligence in the context of renewable energy systems

    A Tale of Two Approaches: Comparing Top-Down and Bottom-Up Strategies for Analyzing and Visualizing High-Dimensional Data

    Get PDF
    The proliferation of high-throughput and sensory technologies in various fields has led to a considerable increase in data volume, complexity, and diversity. Traditional data storage, analysis, and visualization methods are struggling to keep pace with the growth of modern data sets, necessitating innovative approaches to overcome the challenges of managing, analyzing, and visualizing data across various disciplines. One such approach is utilizing novel storage media, such as deoxyribonucleic acid~(DNA), which presents efficient, stable, compact, and energy-saving storage option. Researchers are exploring the potential use of DNA as a storage medium for long-term storage of significant cultural and scientific materials. In addition to novel storage media, scientists are also focussing on developing new techniques that can integrate multiple data modalities and leverage machine learning algorithms to identify complex relationships and patterns in vast data sets. These newly-developed data management and analysis approaches have the potential to unlock previously unknown insights into various phenomena and to facilitate more effective translation of basic research findings to practical and clinical applications. Addressing these challenges necessitates different problem-solving approaches. Researchers are developing novel tools and techniques that require different viewpoints. Top-down and bottom-up approaches are essential techniques that offer valuable perspectives for managing, analyzing, and visualizing complex high-dimensional multi-modal data sets. This cumulative dissertation explores the challenges associated with handling such data and highlights top-down, bottom-up, and integrated approaches that are being developed to manage, analyze, and visualize this data. The work is conceptualized in two parts, each reflecting the two problem-solving approaches and their uses in published studies. The proposed work showcases the importance of understanding both approaches, the steps of reasoning about the problem within them, and their concretization and application in various domains

    Contributions to time series analysis, modelling and forecasting to increase reliability in industrial environments.

    Get PDF
    356 p.La integración del Internet of Things en el sector industrial es clave para alcanzar la inteligencia empresarial. Este estudio se enfoca en mejorar o proponer nuevos enfoques para aumentar la confiabilidad de las soluciones de IA basadas en datos de series temporales en la industria. Se abordan tres fases: mejora de la calidad de los datos, modelos y errores. Se propone una definición estándar de métricas de calidad y se incluyen en el paquete dqts de R. Se exploran los pasos del modelado de series temporales, desde la extracción de características hasta la elección y aplicación del modelo de predicción más eficiente. El método KNPTS, basado en la búsqueda de patrones en el histórico, se presenta como un paquete de R para estimar datos futuros. Además, se sugiere el uso de medidas elásticas de similitud para evaluar modelos de regresión y la importancia de métricas adecuadas en problemas de clases desbalanceadas. Las contribuciones se validaron en casos de uso industrial de diferentes campos: calidad de producto, previsión de consumo eléctrico, detección de porosidad y diagnóstico de máquinas

    Intelligent Sensing and Learning for Advanced MIMO Communication Systems

    Get PDF

    Applications

    Get PDF
    Volume 3 describes how resource-aware machine learning methods and techniques are used to successfully solve real-world problems. The book provides numerous specific application examples: in health and medicine for risk modelling, diagnosis, and treatment selection for diseases in electronics, steel production and milling for quality control during manufacturing processes in traffic, logistics for smart cities and for mobile communications

    Jornadas Nacionales de Investigación en Ciberseguridad: actas de las VIII Jornadas Nacionales de Investigación en ciberseguridad: Vigo, 21 a 23 de junio de 2023

    Get PDF
    Jornadas Nacionales de Investigación en Ciberseguridad (8ª. 2023. Vigo)atlanTTicAMTEGA: Axencia para a modernización tecnolóxica de GaliciaINCIBE: Instituto Nacional de Cibersegurida

    Predictive Modelling Approach to Data-Driven Computational Preventive Medicine

    Get PDF
    This thesis contributes novel predictive modelling approaches to data-driven computational preventive medicine and offers an alternative framework to statistical analysis in preventive medicine research. In the early parts of this research, this thesis presents research by proposing a synergy of machine learning methods for detecting patterns and developing inexpensive predictive models from healthcare data to classify the potential occurrence of adverse health events. In particular, the data-driven methodology is founded upon a heuristic-systematic assessment of several machine-learning methods, data preprocessing techniques, models’ training estimation and optimisation, and performance evaluation, yielding a novel computational data-driven framework, Octopus. Midway through this research, this thesis advances research in preventive medicine and data mining by proposing several new extensions in data preparation and preprocessing. It offers new recommendations for data quality assessment checks, a novel multimethod imputation (MMI) process for missing data mitigation, a novel imbalanced resampling approach, and minority pattern reconstruction (MPR) led by information theory. This thesis also extends the area of model performance evaluation with a novel classification performance ranking metric called XDistance. In particular, the experimental results show that building predictive models with the methods guided by our new framework (Octopus) yields domain experts' approval of the new reliable models’ performance. Also, performing the data quality checks and applying the MMI process led healthcare practitioners to outweigh predictive reliability over interpretability. The application of MPR and its hybrid resampling strategies led to better performances in line with experts' success criteria than the traditional imbalanced data resampling techniques. Finally, the use of the XDistance performance ranking metric was found to be more effective in ranking several classifiers' performances while offering an indication of class bias, unlike existing performance metrics The overall contributions of this thesis can be summarised as follow. First, several data mining techniques were thoroughly assessed to formulate the new Octopus framework to produce new reliable classifiers. In addition, we offer a further understanding of the impact of newly engineered features, the physical activity index (PAI) and biological effective dose (BED). Second, the newly developed methods within the new framework. Finally, the newly accepted developed predictive models help detect adverse health events, namely, visceral fat-associated diseases and advanced breast cancer radiotherapy toxicity side effects. These contributions could be used to guide future theories, experiments and healthcare interventions in preventive medicine and data mining
    corecore