1,023 research outputs found

    Sparse Localization with a Mobile Beacon Based on LU Decomposition in Wireless Sensor Networks

    Get PDF
    Node localization is the core in wireless sensor network. It can be solved by powerful beacons, which are equipped with global positioning system devices to know their location information. In this article, we present a novel sparse localization approach with a mobile beacon based on LU decomposition. Our scheme firstly translates node localization problem into a 1-sparse vector recovery problem by establishing sparse localization model. Then, LU decomposition pre-processing is adopted to solve the problem that measurement matrix does not meet the re¬stricted isometry property. Later, the 1-sparse vector can be exactly recovered by compressive sensing. Finally, as the 1-sparse vector is approximate sparse, weighted Cen¬troid scheme is introduced to accurately locate the node. Simulation and analysis show that our scheme has better localization performance and lower requirement for the mobile beacon than MAP+GC, MAP-M, and MAP-M&N schemes. In addition, the obstacles and DOI have little effect on the novel scheme, and it has great localization performance under low SNR, thus, the scheme proposed is robust

    Prototype to Increase Crosswalk Safety by Integrating Computer Vision with ITS-G5 Technologies

    Get PDF
    Human errors are probably the main cause of car accidents, and this type of vehicle is one of the most dangerous forms of transport for people. The danger comes from the fact that on public roads there are simultaneously different types of actors (drivers, pedestrians or cyclists) and many objects that change their position over time, making difficult to predict their immediate movements. The intelligent transport system (ITS-G5) standard specifies the European communication technologies and protocols to assist public road users, providing them with relevant information. The scientific community is developing ITS-G5 applications for various purposes, among which is the increasing of pedestrian safety. This paper describes the developed work to implement an ITS-G5 prototype that aims at the increasing of pedestrian and driver safety in the vicinity of a pedestrian crosswalk by sending ITS-G5 decentralized environmental notification messages (DENM) to the vehicles. These messages are analyzed, and if they are relevant, they are presented to the driver through a car’s onboard infotainment system. This alert allows the driver to take safety precautions to prevent accidents. The implemented prototype was tested in a controlled environment pedestrian crosswalk. The results showed the capacity of the prototype for detecting pedestrians, suitable message sending, the reception and processing on a vehicle onboard unit (OBU) module and its presentation on the car onboard infotainment system.info:eu-repo/semantics/publishedVersio
    • …
    corecore