37,350 research outputs found

    Fine-To-Coarse Global Registration of RGB-D Scans

    Full text link
    RGB-D scanning of indoor environments is important for many applications, including real estate, interior design, and virtual reality. However, it is still challenging to register RGB-D images from a hand-held camera over a long video sequence into a globally consistent 3D model. Current methods often can lose tracking or drift and thus fail to reconstruct salient structures in large environments (e.g., parallel walls in different rooms). To address this problem, we propose a "fine-to-coarse" global registration algorithm that leverages robust registrations at finer scales to seed detection and enforcement of new correspondence and structural constraints at coarser scales. To test global registration algorithms, we provide a benchmark with 10,401 manually-clicked point correspondences in 25 scenes from the SUN3D dataset. During experiments with this benchmark, we find that our fine-to-coarse algorithm registers long RGB-D sequences better than previous methods

    3D Particle Tracking Velocimetry Method: Advances and Error Analysis

    Get PDF
    A full three-dimensional particle tracking system was developed and tested. By using three separate CCDs placed at the vertices of an equilateral triangle, the threedimensional location of particles can be determined. Particle locations measured at two different times can then be used to create a three-component, three-dimensional velocity field. Key developments are: the ability to accurately process overlapping particle images, offset CCDs to significantly improve effective resolution, allowance for dim particle images, and a hybrid particle tracking technique ideal for three-dimensional flows when only two sets of images exist. An in-depth theoretical error analysis was performed which gives the important sources of error and their effect on the overall system. This error analysis was verified through a series of experiments, which utilized a test target with 100 small dots per square inch. For displacements of 2.54mm the mean errors were less than 2% and the 90% confidence limits were less than 5.2 μm in the plane perpendicular to the camera axis, and 66 μm in the direction of the camera axis. The system was used for flow measurements around a delta wing at an angle of attack. These measurements show the successful implementation of the system for three-dimensional flow velocimetry

    Automatic Crack Detection in Built Infrastructure Using Unmanned Aerial Vehicles

    Full text link
    This paper addresses the problem of crack detection which is essential for health monitoring of built infrastructure. Our approach includes two stages, data collection using unmanned aerial vehicles (UAVs) and crack detection using histogram analysis. For the data collection, a 3D model of the structure is first created by using laser scanners. Based on the model, geometric properties are extracted to generate way points necessary for navigating the UAV to take images of the structure. Then, our next step is to stick together those obtained images from the overlapped field of view. The resulting image is then clustered by histogram analysis and peak detection. Potential cracks are finally identified by using locally adaptive thresholds. The whole process is automatically carried out so that the inspection time is significantly improved while safety hazards can be minimised. A prototypical system has been developed for evaluation and experimental results are included.Comment: In proceeding of The 34th International Symposium on Automation and Robotics in Construction (ISARC), pp. 823-829, Taipei, Taiwan, 201

    The WFPC2 Archival Parallels Project

    Full text link
    We describe the methods and procedures developed to obtain a near-automatic combination of WFPC2 images obtained as part of the WFPC2 Archival Pure Parallels program. Several techniques have been developed or refined to ensure proper alignment, registration, and combination of overlapping images that can be obtained at different times and with different orientations. We quantify the success rate and the accuracy of the registration of images of different types, and we develop techniques suitable to equalize the sky background without unduly affecting extended emission. About 600 combined images of the 1,500 eventually planned have already been publicly released through the STScI Archive. The images released to date are especially suited to study star formation in the Magellanic Clouds, the stellar population in the halo of nearby galaxies, and the properties of star-forming galaxies at z3 z \sim 3 .Comment: 12 pages, 7 figures, to appear in the PAS
    corecore