161 research outputs found

    Computing the minimum distance between two Bézier curves

    Get PDF
    International audienceA sweeping sphere clipping method is presented for computing the minimum distance between two Bézier curves. The sweeping sphere is constructed by rolling a sphere with its center point along a curve. The initial radius of the sweeping sphere can be set as the minimum distance between an end point and the other curve. The nearest point on a curve must be contained in the sweeping sphere along the other curve, and all of the parts outside the sweeping sphere can be eliminated. A simple sufficient condition when the nearest point is one of the two end points of a curve is provided, which turns the curve/curve case into a point/curve case and leads to higher efficiency. Examples are shown to illustrate efficiency and robustness of the new method

    Computing the minimum distance between a point and a NURBS curve

    Get PDF
    International audienceA new method is presented for computing the minimum distance between a point and a NURBS curve. It utilizes a circular clipping technique to eliminate the curve parts outside a circle with the test point as its center point. The radius of the elimination circle becomes smaller and smaller during the subdivision process. A simple condition for terminating the subdivision process is provided, which leads to very few subdivision steps in the new method. Examples are shown to illustrate the efficiency and robustness of the new method

    Computing the minimum distance between a point and a clamped B-spline surface

    Get PDF
    International audienceThe computation of the minimum distance between a point and a surface is important for the applications such as CAD/CAM, NC verification, robotics and computer graphics. This paper presents a spherical clipping method to compute the minimum distance between a point and a clamped B-spline surface. The surface patches outside the clipping sphere which do not contain the nearest point are eliminated. Another exclusion criterion whether the nearest point is on the boundary curves of the surface is employed, which is proved to be superior to previous comparable criteria. Examples are also shown to illustrate efficiency and correctness of the new method

    Efficient and High-Quality Rendering of Higher-Order Geometric Data Representations

    Get PDF
    Computer-Aided Design (CAD) bezeichnet den Entwurf industrieller Produkte mit Hilfe von virtuellen 3D Modellen. Ein CAD-Modell besteht aus parametrischen Kurven und Flächen, in den meisten Fällen non-uniform rational B-Splines (NURBS). Diese mathematische Beschreibung wird ebenfalls zur Analyse, Optimierung und Präsentation des Modells verwendet. In jeder dieser Entwicklungsphasen wird eine unterschiedliche visuelle Darstellung benötigt, um den entsprechenden Nutzern ein geeignetes Feedback zu geben. Designer bevorzugen beispielsweise illustrative oder realistische Darstellungen, Ingenieure benötigen eine verständliche Visualisierung der Simulationsergebnisse, während eine immersive 3D Darstellung bei einer Benutzbarkeitsanalyse oder der Designauswahl hilfreich sein kann. Die interaktive Darstellung von NURBS-Modellen und -Simulationsdaten ist jedoch aufgrund des hohen Rechenaufwandes und der eingeschränkten Hardwareunterstützung eine große Herausforderung. Diese Arbeit stellt vier neuartige Verfahren vor, welche sich mit der interaktiven Darstellung von NURBS-Modellen und Simulationensdaten befassen. Die vorgestellten Algorithmen nutzen neue Fähigkeiten aktueller Grafikkarten aus, um den Stand der Technik bezüglich Qualität, Effizienz und Darstellungsgeschwindigkeit zu verbessern. Zwei dieser Verfahren befassen sich mit der direkten Darstellung der parametrischen Beschreibung ohne Approximationen oder zeitaufwändige Vorberechnungen. Die dabei vorgestellten Datenstrukturen und Algorithmen ermöglichen die effiziente Unterteilung, Klassifizierung, Tessellierung und Darstellung getrimmter NURBS-Flächen und einen interaktiven Ray-Casting-Algorithmus für die Isoflächenvisualisierung von NURBSbasierten isogeometrischen Analysen. Die weiteren zwei Verfahren beschreiben zum einen das vielseitige Konzept der programmierbaren Transparenz für illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle und zum anderen eine neue hybride Methode zur Reprojektion halbtransparenter und undurchsichtiger Bildinformation für die Beschleunigung der Erzeugung von stereoskopischen Bildpaaren. Die beiden letztgenannten Ansätze basieren auf rasterisierter Geometrie und sind somit ebenfalls für normale Dreiecksmodelle anwendbar, wodurch die Arbeiten auch einen wichtigen Beitrag in den Bereichen der Computergrafik und der virtuellen Realität darstellen. Die Auswertung der Arbeit wurde mit großen, realen NURBS-Datensätzen durchgeführt. Die Resultate zeigen, dass die direkte Darstellung auf Grundlage der parametrischen Beschreibung mit interaktiven Bildwiederholraten und in subpixelgenauer Qualität möglich ist. Die Einführung programmierbarer Transparenz ermöglicht zudem die Umsetzung kollaborativer 3D Interaktionstechniken für die Exploration der Modelle in virtuellenUmgebungen sowie illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle. Die Erzeugung stereoskopischer Bildpaare für die interaktive Visualisierung auf 3D Displays konnte beschleunigt werden. Diese messbare Verbesserung wurde zudem im Rahmen einer Nutzerstudie als wahrnehmbar und vorteilhaft befunden.In computer-aided design (CAD), industrial products are designed using a virtual 3D model. A CAD model typically consists of curves and surfaces in a parametric representation, in most cases, non-uniform rational B-splines (NURBS). The same representation is also used for the analysis, optimization and presentation of the model. In each phase of this process, different visualizations are required to provide an appropriate user feedback. Designers work with illustrative and realistic renderings, engineers need a comprehensible visualization of the simulation results, and usability studies or product presentations benefit from using a 3D display. However, the interactive visualization of NURBS models and corresponding physical simulations is a challenging task because of the computational complexity and the limited graphics hardware support. This thesis proposes four novel rendering approaches that improve the interactive visualization of CAD models and their analysis. The presented algorithms exploit latest graphics hardware capabilities to advance the state-of-the-art in terms of quality, efficiency and performance. In particular, two approaches describe the direct rendering of the parametric representation without precomputed approximations and timeconsuming pre-processing steps. New data structures and algorithms are presented for the efficient partition, classification, tessellation, and rendering of trimmed NURBS surfaces as well as the first direct isosurface ray-casting approach for NURBS-based isogeometric analysis. The other two approaches introduce the versatile concept of programmable order-independent semi-transparency for the illustrative and comprehensible visualization of depth-complex CAD models, and a novel method for the hybrid reprojection of opaque and semi-transparent image information to accelerate stereoscopic rendering. Both approaches are also applicable to standard polygonal geometry which contributes to the computer graphics and virtual reality research communities. The evaluation is based on real-world NURBS-based models and simulation data. The results show that rendering can be performed directly on the underlying parametric representation with interactive frame rates and subpixel-precise image results. The computational costs of additional visualization effects, such as semi-transparency and stereoscopic rendering, are reduced to maintain interactive frame rates. The benefit of this performance gain was confirmed by quantitative measurements and a pilot user study

    Inverse design of metamaterials via topology optimization

    Get PDF
    Metamaterials are artificial composites with micro-structures that are systematically designed such that the macroscopic behavior can accommodate particular functionalities or exhibit extraordinary properties, which are not commonly found in natural materials. Topology and geometry of micro-structures play an important role in characterizing the properties of the metamaterials. Inverse design of metamaterials via topology optimization methods offer new topological features and helps in achieving novel physical mechanism or high-performance functionalities. Inverse design is an iterative process, that involves numerical analysis and requires much computational resources. This dissertation proposes the methodology for designing metamaterials using topology optimization with level set functions and model order reduction methods. Level set method enables design with smooth boundaries, while the computational effort required in solving large linear system of equations is eliminated with reduced basis approximations. An example of the inverse design method from the dissertation is to find a unit cell structure that results in macroscopic properties with intended elastic modulus for instance, with negative Poisson's ratio. The other example is to enhance hydrophone performance in 1-3 piezoelectric composites. Numerical examples demonstrate that the methodology is computationally efficient and robust for designing metamaterials. Taking advantage of inverse design as a powerful tool in designing metamaterials, it is adopted in this dissertation for the waveguides design. The second part of this thesis aims to design phononic crystals that offer robust transport of mechanical waves on the interfaces. The propagating wave modes in plate-like structures are topologically protected edge states and are analogous to quantum valley hall effect and quantum spin hall effect in the electronic systems. The computational inverse design methodology adopted is through topology optimization using genetic algorithm to find optimized unit cell geometries resulting from objective functions based on band structures and wave modes. The optimized phononic crystals support wave propagation against backscattering inspite of the presence of defects.Metamaterialien sind künstliche Verbundwerkstoffe mit Mikrostrukturen, die systematisch so gestaltet sind, dass das makroskopische Verhalten besondere Funktionen oder außergewöhnliche Eigenschaften aufweist, die in natürlichen Materialien nicht üblich sind. Topologie und Geometrie der Mikrostrukturen spielen eine wichtige Rolle bei der Charakterisierung der Eigenschaften der Metamaterialien. Das inverse Design von Metamaterialien mittels Topologie-Optimierungsmethoden bietet neue topologische Eigenschaften und hilft bei der Erreichung neuartiger physikalischer Mechanismen oder Hochleistungsfunktionen. Inverses Design ist ein iterativer Prozess, der numerische Analysen beinhaltet und viel Rechenleistung erfordert. In dieser Dissertation wird eine Methodik für den Entwurf von Metamaterialien unter Verwendung von Topologieoptimierung mit Level-Set-Funktionen und Methoden zur Reduzierung der Modellordnung vorgeschlagen. Die Level-Set-Methode ermöglicht ein Design mit glatten Grenzen, während der Rechenaufwand, der für die Lösung großer linearer Gleichungssysteme erforderlich ist, durch reduzierte Basisapproximationen entfällt. Ein Beispiel für die inverse Entwurfsmethode aus der Dissertation ist die Suche nach einer Einheitszellenstruktur, die zu makroskopischen Eigenschaften mit beabsichtigtem Elastizitätsmodul führt, beispielsweise mit negativer Poissonzahl. Ein anderes Beispiel ist die Verbesserung der Leistung von Hydrophonen in 1-3 piezoelektrischen Verbundwerkstoffen. Numerische Beispiele zeigen, dass die Methodik für die Entwicklung von Metamaterialien rechnerisch effizient und robust ist. Die Vorteile des inversen Designs als leistungsfähiges Werkzeug bei der Entwicklung von Metamaterialien werden in dieser Dissertation für die Entwicklung von Wellenleitern genutzt. Der zweite Teil dieser Arbeit zielt darauf ab, phononische Kristalle zu entwerfen, die einen robusten Transport von mechanischen Wellen an den Grenzflächen ermöglichen. Die sich ausbreitenden Wellenmoden in plattenförmigen Strukturen sind topologisch geschützte Randzustände und entsprechen dem Quanten-Tal-Hall-Effekt und dem Quanten-Spin-Hall-Effekt in elektronischen Systemen. Die angewandte rechnerische inverse Entwurfsmethodik besteht in der Topologieoptimierung mit Hilfe eines genetischen Algorithmus, um optimierte Einheitszellengeometrien zu finden, die sich aus Zielfunktionen auf der Grundlage von Bandstrukturen und Wellenmoden ergeben. Die optimierten phononischen Kristalle unterstützen die Wellenausbreitung trotz des Vorhandenseins von Defekten gegen Rückstreuung

    Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds

    Full text link
    For data given on a nonlinear space, like angles, symmetric positive matrices, the sphere, or the hyperbolic space, there is often enough structure to form a Riemannian manifold. We present the Julia package Manifolds.jl, providing a fast and easy to use library of Riemannian manifolds and Lie groups. We introduce a common interface, available in ManifoldsBase.jl, with which new manifolds, applications, and algorithms can be implemented. We demonstrate the utility of Manifolds.jl using B\'ezier splines, an optimization task on manifolds, and a principal component analysis on nonlinear data. In a benchmark, Manifolds.jl outperforms existing packages in Matlab or Python by several orders of magnitude and is about twice as fast as a comparable package implemented in C++

    Towards a High Quality Real-Time Graphics Pipeline

    Get PDF
    Modern graphics hardware pipelines create photorealistic images with high geometric complexity in real time. The quality is constantly improving and advanced techniques from feature film visual effects, such as high dynamic range images and support for higher-order surface primitives, have recently been adopted. Visual effect techniques have large computational costs and significant memory bandwidth usage. In this thesis, we identify three problem areas and propose new algorithms that increase the performance of a set of computer graphics techniques. Our main focus is on efficient algorithms for the real-time graphics pipeline, but parts of our research are equally applicable to offline rendering. Our first focus is texture compression, which is a technique to reduce the memory bandwidth usage. The core idea is to store images in small compressed blocks which are sent over the memory bus and are decompressed on-the-fly when accessed. We present compression algorithms for two types of texture formats. High dynamic range images capture environment lighting with luminance differences over a wide intensity range. Normal maps store perturbation vectors for local surface normals, and give the illusion of high geometric surface detail. Our compression formats are tailored to these texture types and have compression ratios of 6:1, high visual fidelity, and low-cost decompression logic. Our second focus is tessellation culling. Culling is a commonly used technique in computer graphics for removing work that does not contribute to the final image, such as completely hidden geometry. By discarding rendering primitives from further processing, substantial arithmetic computations and memory bandwidth can be saved. Modern graphics processing units include flexible tessellation stages, where rendering primitives are subdivided for increased geometric detail. Images with highly detailed models can be synthesized, but the incurred cost is significant. We have devised a simple remapping technique that allowsfor better tessellation distribution in screen space. Furthermore, we present programmable tessellation culling, where bounding volumes for displaced geometry are computed and used to conservatively test if a primitive can be discarded before tessellation. We introduce a general tessellation culling framework, and an optimized algorithm for rendering of displaced Bézier patches, which is expected to be a common use case for graphics hardware tessellation. Our third and final focus is forward-looking, and relates to efficient algorithms for stochastic rasterization, a rendering technique where camera effects such as depth of field and motion blur can be faithfully simulated. We extend a graphics pipeline with stochastic rasterization in spatio-temporal space and show that stochastic motion blur can be rendered with rather modest pipeline modifications. Furthermore, backface culling algorithms for motion blur and depth of field rendering are presented, which are directly applicable to stochastic rasterization. Hopefully, our work in this field brings us closer to high quality real-time stochastic rendering

    Desenvolvimento de metodologias para identificação de parâmetros e otimização de forma em simulações numéricas de processos de conformação plástica

    Get PDF
    Doutoramento em Engenharia MecânicaPor parte da indústria de estampagem tem-se verificado um interesse crescente em simulações numéricas de processos de conformação de chapa, incluindo também métodos de engenharia inversa. Este facto ocorre principalmente porque as técnicas de tentativa-erro, muito usadas no passado, não são mais competitivas a nível económico. O uso de códigos de simulação é, atualmente, uma prática corrente em ambiente industrial, pois os resultados tipicamente obtidos através de códigos com base no Método dos Elementos Finitos (MEF) são bem aceites pelas comunidades industriais e científicas Na tentativa de obter campos de tensão e de deformação precisos, uma análise eficiente com o MEF necessita de dados de entrada corretos, como geometrias, malhas, leis de comportamento não-lineares, carregamentos, leis de atrito, etc.. Com o objetivo de ultrapassar estas dificuldades podem ser considerados os problemas inversos. No trabalho apresentado, os seguintes problemas inversos, em Mecânica computacional, são apresentados e analisados: (i) problemas de identificação de parâmetros, que se referem à determinação de parâmetros de entrada que serão posteriormente usados em modelos constitutivos nas simulações numéricas e (ii) problemas de definição geométrica inicial de chapas e ferramentas, nos quais o objetivo é determinar a forma inicial de uma chapa ou de uma ferramenta tendo em vista a obtenção de uma determinada geometria após um processo de conformação. São introduzidas e implementadas novas estratégias de otimização, as quais conduzem a parâmetros de modelos constitutivos mais precisos. O objetivo destas estratégias é tirar vantagem das potencialidades de cada algoritmo e melhorar a eficiência geral dos métodos clássicos de otimização, os quais são baseados em processos de apenas um estágio. Algoritmos determinísticos, algoritmos inspirados em processos evolucionários ou mesmo a combinação destes dois são usados nas estratégias propostas. Estratégias de cascata, paralelas e híbridas são apresentadas em detalhe, sendo que as estratégias híbridas consistem na combinação de estratégias em cascata e paralelas. São apresentados e analisados dois métodos distintos para a avaliação da função objetivo em processos de identificação de parâmetros. Os métodos considerados são uma análise com um ponto único ou uma análise com elementos finitos. A avaliação com base num único ponto caracteriza uma quantidade infinitesimal de material sujeito a uma determinada história de deformação. Por outro lado, na análise através de elementos finitos, o modelo constitutivo é implementado e considerado para cada ponto de integração. Problemas inversos são apresentados e descritos, como por exemplo, a definição geométrica de chapas e ferramentas. Considerando o caso da otimização da forma inicial de uma chapa metálica a definição da forma inicial de uma chapa para a conformação de um elemento de cárter é considerado como problema em estudo. Ainda neste âmbito, um estudo sobre a influência da definição geométrica inicial da chapa no processo de otimização é efetuado. Este estudo é realizado considerando a formulação de NURBS na definição da face superior da chapa metálica, face cuja geometria será alterada durante o processo de conformação plástica. No caso dos processos de otimização de ferramentas, um processo de forjamento a dois estágios é apresentado. Com o objetivo de obter um cilindro perfeito após o forjamento, dois métodos distintos são considerados. No primeiro, a forma inicial do cilindro é otimizada e no outro a forma da ferramenta do primeiro estágio de conformação é otimizada. Para parametrizar a superfície livre do cilindro são utilizados diferentes métodos. Para a definição da ferramenta são também utilizados diferentes parametrizações. As estratégias de otimização propostas neste trabalho resolvem eficientemente problemas de otimização para a indústria de conformação metálica.The interest of the stamping industry in the numerical simulation of sheet metal forming, including inverse engineering approaches, is increasing. This fact occurs mainly because trial and error design procedures, commonly used in the past, are no longer economically competitive. The use of simulation codes is currently a common practice in the industrial forming environment, as the results typically obtained by means of the Finite Element Method (FEM) are well accepted by both the industrial and scientific communities. In order to obtain accurate stress and strain fields, an effective FEM analysis requires reliable input data such as geometry, mesh, non-linear material behaviour laws, loading cases, friction laws, etc.. In order to overcome these difficulties, a possible approach is based on inverse problems. In this work, the following inverse problems in computational Mechanics are presented and analysed: (i) parameter identification problem, that refer to the definition of input parameters to be used in constitutive models for numerical simulations, based on experimental data, and (ii) initial blank and tool design problem, where the aim would be to estimate the initial shape of a blank or a tool in order to achieve the desired geometry after the forming process. New optimization strategies in parameter identification problems that lead more efficiently to accurate material parameters are introduced and implemented. The aim of these strategies is to take advantage of the strength of each selected algorithm and improve the overall robustness and efficiency of classical optimization methodologies based on single stages. Deterministic algorithms, evolutionary-inspired algorithms or even the combination of these two algorithms are used in the proposed strategies. Strategies such as cascade, parallel and hybrid approaches are analysed in detail. In hybrid strategies, cascade and parallel approaches are integrated. Two different approaches are presented and analyzed for the evaluation of the objective functions in parameter identification processes. The approaches considered are single-point and FE analyses. The single infinitesimal point evaluation seems to characterize an infinitesimal amount of material subjected to all kind of deformation history. On the other hand, in all FE analysis codes, the constitutive model is implemented and accounted for in each element integration point. Inverse problems, such as blank and tool design, are presented and described. In the case of the initial blank optimization process the design of a carter is presented. Also related to the initial blank optimization process, a study of the influence of the initial geometry definition in the optimization process is conducted. This study is performed considering the NURBS formulation to model the blank upper surface that will be changed during the optimization process. In the case of the tool design problem, a two-stage forging process is presented. In order to achieve a straight cylinder after forging, two different approaches are analyzed. In the first one, the initial geometry of the cylinder is optimized and, in the other one, the shape of the first stage tool is optimized. To parameterize the free surface of the cylinder different methods are presented. Furthermore, in order to define the tool in this example, different parameterizations are presented. The optimisation strategies proposed in this work efficiently solve optimisation problems for the industrial metal forming
    corecore