627 research outputs found

    Learning to See the Wood for the Trees: Deep Laser Localization in Urban and Natural Environments on a CPU

    Full text link
    Localization in challenging, natural environments such as forests or woodlands is an important capability for many applications from guiding a robot navigating along a forest trail to monitoring vegetation growth with handheld sensors. In this work we explore laser-based localization in both urban and natural environments, which is suitable for online applications. We propose a deep learning approach capable of learning meaningful descriptors directly from 3D point clouds by comparing triplets (anchor, positive and negative examples). The approach learns a feature space representation for a set of segmented point clouds that are matched between a current and previous observations. Our learning method is tailored towards loop closure detection resulting in a small model which can be deployed using only a CPU. The proposed learning method would allow the full pipeline to run on robots with limited computational payload such as drones, quadrupeds or UGVs.Comment: Accepted for publication at RA-L/ICRA 2019. More info: https://ori.ox.ac.uk/esm-localizatio

    PointSSC: A Cooperative Vehicle-Infrastructure Point Cloud Benchmark for Semantic Scene Completion

    Full text link
    Semantic Scene Completion (SSC) aims to jointly generate space occupancies and semantic labels for complex 3D scenes. Most existing SSC models focus on volumetric representations, which are memory-inefficient for large outdoor spaces. Point clouds provide a lightweight alternative but existing benchmarks lack outdoor point cloud scenes with semantic labels. To address this, we introduce PointSSC, the first cooperative vehicle-infrastructure point cloud benchmark for semantic scene completion. These scenes exhibit long-range perception and minimal occlusion. We develop an automated annotation pipeline leveraging Segment Anything to efficiently assign semantics. To benchmark progress, we propose a LiDAR-based model with a Spatial-Aware Transformer for global and local feature extraction and a Completion and Segmentation Cooperative Module for joint completion and segmentation. PointSSC provides a challenging testbed to drive advances in semantic point cloud completion for real-world navigation.Comment: 8 pages, 5 figures, submitted to ICRA202
    • …
    corecore