174 research outputs found

    An Experimental Investigation of Hyperbolic Routing with a Smart Forwarding Plane in NDN

    Full text link
    Routing in NDN networks must scale in terms of forwarding table size and routing protocol overhead. Hyperbolic routing (HR) presents a potential solution to address the routing scalability problem, because it does not use traditional forwarding tables or exchange routing updates upon changes in network topologies. Although HR has the drawbacks of producing sub-optimal routes or local minima for some destinations, these issues can be mitigated by NDN's intelligent data forwarding plane. However, HR's viability still depends on both the quality of the routes HR provides and the overhead incurred at the forwarding plane due to HR's sub-optimal behavior. We designed a new forwarding strategy called Adaptive Smoothed RTT-based Forwarding (ASF) to mitigate HR's sub-optimal path selection. This paper describes our experimental investigation into the packet delivery delay and overhead under HR as compared with Named-Data Link State Routing (NLSR), which calculates shortest paths. We run emulation experiments using various topologies with different failure scenarios, probing intervals, and maximum number of next hops for a name prefix. Our results show that HR's delay stretch has a median close to 1 and a 95th-percentile around or below 2, which does not grow with the network size. HR's message overhead in dynamic topologies is nearly independent of the network size, while NLSR's overhead grows polynomially at least. These results suggest that HR offers a more scalable routing solution with little impact on the optimality of routing paths

    Exploiting Information-centric Networking to Federate Spatial Databases

    Full text link
    This paper explores the methodologies, challenges, and expected advantages related to the use of the information-centric network (ICN) technology for federating spatial databases. ICN services allow simplifying the design of federation procedures, improving their performance, and providing so-called data-centric security. In this work, we present an architecture that is able to federate spatial databases and evaluate its performance using a real data set coming from OpenStreetMap within a heterogeneous federation formed by MongoDB and CouchBase spatial database systems

    Efficient tree-based content-based routing schemes

    Get PDF
    This thesis is about routing and forwarding for inherently multicast communication such as the communication typical of information-centric networks. The notion of Information-Centric Networking (ICN) is an evolution of the Internet from the current host-centric architecture to a new architecture in which communication is based on “named information”. The ambitious goal of ICN is to effectively support the exchange and use of information in an ever more connected world, with billions of devices, many of which are mobile, producing and consuming large amounts of data. ICN is intended to support scalable content distribution, mobility, and security, for such applications as video on demand and networks of sensors or the so-called Internet of Things. Many ICN architectures have emerged in the past decade, and the ICN community has made significant progress in terms of infrastructure, test-bed deployments, and application case studies. And yet, despite the impressive research effort, the fundamental problems of routing and forwarding remain open. In particular, none of the proposed architectures has developed truly scalable name-based routing schemes and efficient name-based forwarding algorithms. This is not surprising, since the problem of routing based on names, in its most general formulation, is known to be fundamentally difficult. In general, one would want to support application-defined names (as opposed to network-defined addresses) with a compact routing scheme (small routing tables) that uses optimal paths and minimizes congestion, and that admits to a fast forwarding algorithm. Furthermore, one would want to construct this routing scheme with a decentralized and incremental protocol for administrative autonomy and efficient dynamic updates. However, there are clear theoretical limits that simply make it impossible to achieve all these goals. In this thesis we explore the design space of routing and forwarding in an information-centric network. Our purpose is to develop routing schemes and forwarding algorithms that combine many desirable properties. We consider two forms of addressing, one tied to network locations, and one based on more expressive content descriptors. We then consider trees as basic routing structures, and with those we develop routing schemes that are intended to minimize path lengths and congestion, separately or together. For one of these schemes based on expressive content descriptors, we also develop a fast forwarding algorithm specialized for massively parallel architectures such as GPUs. In summary, this thesis presents two efficient and scalable routing algorithms for two different types of networks, plus one scalable forwarding algorithm. We summarize each individual contribution below: Low-congestion geographic routing for wireless networks. We develop a low-congestion, multicast routing scheme designed specifically for wireless networks. The scheme supports geographical multicast routing, meaning routing to a set of nodes addressed by their physical position. The scheme builds a geometric minimum spanning tree connecting the source to all the destinations. Then, for each edge in this tree, the scheme routes a message through a random intermediate node, chosen independently of the set of multicast requests. The intermediate node is chosen in the vicinity of the corresponding edge such that congestion is reduced without stretching routes by more than a constant factor. Multi-tree scheme for content-based routing in ICN. We develop a tree-based routing scheme designed for large-scale wired networks such as the Internet. The scheme supports two forms of addresses: application-defined content descriptors, and network-defined locators. We first show that the scheme is effective in terms of stretch and congestion on the current AS-level Internet graph even with only a few spanning trees. Then we show that our content descriptors, which consist of sets of tags and that are more expressive than the name prefixes used in mainstream ICN, aggregate well in practice under our scheme. We also explain in detail how to use descriptors and locators, together with unique content identifiers, to support the efficient transmission and sharing of information through scalable and loop-free routes. Tag-based forwarding (partial matching) algorithm on GPUs. To accompany our ICN routing scheme, we develop a fast forwarding algorithm that matches incoming packets against forwarding tables with tens of millions of entries. To achieve high performance, we develop a practical solution for the partial matching problem that lies at the heart of this forwarding scheme. This solution amounts to a massively parallel algorithm specifically designed for a hybrid CPU/GPU architecture

    Recent advances in information-centric networking based internet of things (ICN-IoT)

    Get PDF
    Information-Centric Networking (ICN) is being realized as a promising approach to accomplish the shortcomings of current IP-address based networking. ICN models are based on naming the content to get rid of address-space scarcity, accessing the content via name-based-routing, caching the content at intermediate nodes to provide reliable, efficient data delivery and self-certifying contents to ensure better security. Obvious benefits of ICN in terms of fast and efficient data delivery and improved reliability raises ICN as highly promising networking model for Internet of Things (IoTs) like environments. IoT aims to connect anyone and/or anything at any time by any path on any place. From last decade, IoTs attracts both industry and research communities. IoTs is an emerging research field and still in its infancy. Thus, this paper presents the potential of ICN for IoTs by providing state-of-the-art literature survey. We discuss briefly the feasibility of ICN features and their models (and architectures) in the context of IoT. Subsequently, we present a comprehensive survey on ICN based caching, naming, security and mobility approaches for IoTs with appropriate classification. Furthermore, we present operating systems (OS) and simulation tools for ICN-IoT. Finally, we provide important research challenges and issues faced by ICN for IoTs

    Performance Analysis and Optimisation of In-network Caching for Information-Centric Future Internet

    Get PDF
    The rapid development in wireless technologies and multimedia services has radically shifted the major function of the current Internet from host-centric communication to service-oriented content dissemination, resulting a mismatch between the protocol design and the current usage patterns. Motivated by this significant change, Information-Centric Networking (ICN), which has been attracting ever-increasing attention from the communication networks research community, has emerged as a new clean-slate networking paradigm for future Internet. Through identifying and routing data by unified names, ICN aims at providing natural support for efficient information retrieval over the Internet. As a crucial characteristic of ICN, in-network caching enables users to efficiently access popular contents from on-path routers equipped with ubiquitous caches, leading to the enhancement of the service quality and reduction of network loads. Performance analysis and optimisation has been and continues to be key research interests of ICN. This thesis focuses on the development of efficient and accurate analytical models for the performance evaluation of ICN caching and the design of optimal caching management schemes under practical network configurations. This research starts with the proposition of a new analytical model for caching performance under the bursty multimedia traffic. The bursty characteristic is captured and the closed formulas for cache hit ratio are derived. To investigate the impact of topology and heterogeneous caching parameters on the performance, a comprehensive analytical model is developed to gain valuable insight into the caching performance with heterogeneous cache sizes, service intensity and content distribution under arbitrary topology. The accuracy of the proposed models is validated by comparing the analytical results with those obtained from extensive simulation experiments. The analytical models are then used as cost-efficient tools to investigate the key network and content parameters on the performance of caching in ICN. Bursty traffic and heterogeneous caching features have significant influence on the performance of ICN. Therefore, in order to obtain optimal performance results, a caching resource allocation scheme, which leverages the proposed model and targets at minimising the total traffic within the network and improving hit probability at the nodes, is proposed. The performance results reveal that the caching allocation scheme can achieve better caching performance and network resource utilisation than the default homogeneous and random caching allocation strategy. To attain a thorough understanding of the trade-off between the economic aspect and service quality, a cost-aware Quality-of-Service (QoS) optimisation caching mechanism is further designed aiming for cost-efficiency and QoS guarantee in ICN. A cost model is proposed to take into account installation and operation cost of ICN under a realistic ISP network scenario, and a QoS model is presented to formulate the service delay and delay jitter in the presence of heterogeneous service requirements and general probabilistic caching strategy. Numerical results show the effectiveness of the proposed mechanism in achieving better service quality and lower network cost. In this thesis, the proposed analytical models are used to efficiently and accurately evaluate the performance of ICN and investigate the key performance metrics. Leveraging the insights discovered by the analytical models, the proposed caching management schemes are able to optimise and enhance the performance of ICN. To widen the outcomes achieved in the thesis, several interesting yet challenging research directions are pointed out

    Social Cooperation for Information-Centric Multimedia Streaming in Highway VANETs

    Get PDF
    Abstract-High-quality multimedia streaming services in Vehicular Ad-hoc Networks (VANETs) are severely hindered by intermittent host connectivity issues. The Information Centric Networking (ICN) paradigm could help solving this issue thanks to its new networking primitives driven by content names rather than host addresses. This unique feature, in fact, enables native support to mobility, in-network caching, nomadic networking, multicast, and efficient content dissemination. In this paper, we focus on exploring the potential social cooperation among vehicles in highways. An ICN-based COoperative Caching solution, namely ICoC, is proposed to improve the quality of experience (QoE) of multimedia streaming services. In particular, ICoC leverages two novel social cooperation schemes, namely partner-assisted and courier-assisted, to enhance information-centric caching. To validate its effectiveness, extensive ns-3 simulations have been executed, showing that ICoC achieves a considerable improvement in terms of start-up delay and playback freezing with respect to a state-of-the-art solution based on probabilistic caching

    Traffic and resource management in content-centric networks (design and evaluation)

    Get PDF
    Dans les dernières années, l utilisation d Internet a sensiblement changé en passant d un modèle de communication centré sur les machines á un centré sur les contenus. La plus part de services utilisés par les clients d Internet aujourd hui sont déjà centré sur les contenus même et pas sur leurs emplacement. Dans ce contexte, beaucoup de projets de recherche proposent un changement de l architecture de l Internet, en mettent des contenu identifié par leur nom au centre du réseau. Ce group de proposition est identifiés sous le nom de Information Centric Networking (ICN). Cette thèse se focalise sur la proposition Content-Centric Network (CCN). Dans une premier temps, nous analysons les performance du modèle de communication CCN en se concentrent sur le partage de la bande passante et de la mémoire et en proposant des formules pour la caractérisation du temps de transfert. Deuxièmement, nous proposons un protocole de contrôle de congestion et des mécanismes de forwarding pour CCN. En particulier on présent un premier mécanisme de contrôle de congestion, Interest Control Protocol (ICP), qui utilise une fenêtre contrôlé avec le mécanisme Additive Increase Multiplicative Decrease au récepteur. En complément avec ça, nous présentons un mécanisme distribué (hop-by-hop) pour obtenir une détection/réaction à la congestion plus rapide. Nous proposons aussi une modification d'ICP en implémentant le mécanisme Remote Adaptive Active Queue Management pour exploiter efficacement le multi-chemin. En fin, nous présentons un mécanisme de forwarding distribué qui base ses décisions sur des mesure de qualité d interface par chaque préfixe disponible dans les tableaux de routage.The advent of the World Wide Web has radically changed Internet usage from host-to-host to service access and data retrieval. The majority of services used by Internet s clients are content-centric (e.g. web). However, the original Internet revolves around host-to-host communication for which it was conceived. Even if Internet has been able to address the challenges offered by new applications, there is an evident mismatch between the architecture and its current usage. Many projects in national research agencies propose to redesign the Internet architecture around named data. Such research efforts are identified under the name of Information Centric Networking. This thesis focuses on the Content-Centric Networking (CCN) proposition. We first analyze the CCN communication model with particular focus on the bandwidth and storage sharing performance, We compute closed formulas for data delivery time, that we use in the second part of the thesis as guideline for network protocol design. Second, we propose some CCN congestion control and forwarding mechanisms. We present a first window based receiver driven flow control protocol, Interest Control Protocol (ICP). We also introduce a hop-by-hop congestion control mechanism to obtain early congestion detection and reaction. We then extend the original ICP congestion control protocol implementing a Remote Adaptive Active Queue Management mechanism in order to efficiently exploit heterogeneous (joint/disjoint) network paths. Finally, we introduce a distributed forwarding mechanism that bases its decisions on per prefix and per interface quality measurement without impacting the system scalability.PARIS-Télécom ParisTech (751132302) / SudocSudocFranceF

    Content, Topology and Cooperation in In-network Caching

    Get PDF
    In-network caching aims at improving content delivery and alleviating pressures on network bandwidth by leveraging universally networked caches. This thesis studies the design of cooperative in-network caching strategy from three perspectives: content, topology and cooperation, specifically focuses on the mechanisms of content delivery and cooperation policy and their impacts on the performance of cache networks. The main contributions of this thesis are twofold. From measurement perspective, we show that the conventional metric hit rate is not sufficient in evaluating a caching strategy on non-trivial topologies, therefore we introduce footprint reduction and coupling factor, which contain richer information. We show cooperation policy is the key in balancing various tradeoffs in caching strategy design, and further investigate the performance impact from content per se via different chunking schemes. From design perspective, we first show different caching heuristics and smart routing schemes can significantly improve the caching performance and facilitate content delivery. We then incorporate well-defined fairness metric into design and derive the unique optimal caching solution on the Pareto boundary with bargaining game framework. In addition, our study on the functional relationship between cooperation overhead and neighborhood size indicates collaboration should be constrained in a small neighborhood due to its cost growing exponentially on general network topologies.Verkonsisäinen välimuistitallennus pyrkii parantamaan sisällöntoimitusta ja helpottamaan painetta verkon siirtonopeudessa hyödyntämällä universaaleja verkottuneita välimuisteja. Tämä väitöskirja tutkii yhteistoiminnallisen verkonsisäisen välimuistitallennuksen suunnittelua kolmesta näkökulmasta: sisällön, topologian ja yhteistyön kautta, erityisesti keskittyen sisällöntoimituksen mekanismeihin ja yhteistyökäytäntöihin sekä näiden vaikutuksiin välimuistiverkkojen performanssiin. Väitöskirjan suurimmat aikaansaannokset ovat kahdella saralla. Mittaamisen näkökulmasta näytämme, että perinteinen metrinen välimuistin osumatarkkuus ei ole riittävä ei-triviaalin välimuistitallennusstrategian arvioinnissa, joten esittelemme parempaa informaatiota sisältävät jalanjäljen pienentämisen sekä yhdistämistekijän. Näytämme, että yhteistyökäytäntö on avain erilaisten välimuistitallennusstrategian suunnitteluun liittyvien kompromissien tasapainotukseen ja tutkimme lisää sisällön erilaisten lohkomisjärjestelmien kautta aiheuttamaa vaikutusta performanssiin. Suunnittelun näkökulmasta näytämme ensin, kuinka erilaiset välimuistitallennuksen heuristiikat ja viisaan reitityksen järjestelmät parantavat merkittävästi välimuistitallennusperformanssia sekä helpottavat sisällön toimitusta. Sisällytämme sitten suunnitteluun hyvin määritellyn oikeudenmukaisuusmittarin ja johdamme uniikin optimaalin välimuistitallennusratkaisun Pareto-rintamalla neuvottelupelin kehyksissä. Lisäksi tutkimuksemme yhteistyökustannusten ja naapurustokoon funktionaalisesta suhteesta viittaa siihen, että yhteistyö on syytä rajoittaa pieneen naapurustoon sen kustannusten kasvaessa eksponentiaalisesti yleisessä verkkotopologiassa

    Self-stabilization in self-organized Multihop Wireless Networks

    Get PDF
    In large scale multihop wireless networks, flat architectures are not scalable. In order to overcome this major drawback, clusterization is introduced to support self-organization and to enable hierarchical routing. When dealing with multihop wireless networks the robustness is a main issue due to the dynamicity of such networks. Several algorithms have been designed for the clusterization process. As far as we know, very few studies check the robustness feature of their clusterization protocols. Moreover, when it is the case, the evaluation is driven by simulations and never by a theoretical approach. In this paper, we show that a clusterization algorithm, that seems to present good properties of robustness, is self-stabilizing. We propose several enhancements to reduce the stabilization time and to improve stability. The use of a Directed Acyclic Graph ensures that the self-stabilizing properties always hold regardless of the underlying topology. These extra criterion are tested by simulations
    corecore