669 research outputs found

    Revisión de literatura de jerarquía volúmenes acotantes enfocados en detección de colisiones

    Get PDF
    (Eng) A bounding volume is a common method to simplify object representation by using the composition of geometrical shapes that enclose the object; it encapsulates complex objects by means of simple volumes and it is widely useful in collision detection applications and ray tracing for rendering algorithms. They are popular in computer graphics and computational geometry. Most popular bounding volumes are spheres, Oriented-Bounding Boxe s (OBB’ s), Axis-Align ed Bound ing Boxes (AABB’ s); moreover , the literature review includes ellipsoids, cylinders, sphere packing, sphere shells , k-DOP’ s, convex hulls, cloud of points, and minimal bounding boxe s, among others. A Bounding Volume Hierarchy is ussualy a tree in which the complete object is represented thigter fitting every level of the hierarchy. Additionally, each bounding volume has a cost associated to construction, update, and interference te ts. For instance, spheres are invariant to rotation and translations, then they do not require being updated ; their constructions and interference tests are more straightforward then OBB’ s; however, their tightness is lower than other bounding volumes. Finally , three comparisons between two polyhedra; seven different algorithms were used, of which five are public libraries for collision detection.(Spa) Un volumen acotante es un método común para simplificar la representación de los objetos por medio de composición de formas geométricas que encierran el objeto; estos encapsulan objetos complejos por medio de volúmenes simples y son ampliamente usados en aplicaciones de detección de colisiones y trazador de rayos para algoritmos de renderización. Los volúmenes acotantes son populares en computación gráfica y en geometría computacional; los más populares son las esferas, las cajas acotantes orientadas (OBB’s) y las cajas acotantes alineadas a los ejes (AABB’s); no obstante, la literatura incluye elipses, cilindros empaquetamiento de esferas, conchas de esferas, k-DOP’s, convex hulls, nubes de puntos y cajas acotantes mínimas, entre otras. Una jerarquía de volúmenes acotantes es usualmente un árbol, en el cual la representación de los objetos es más ajustada en cada uno de los niveles de la jerarquía. Adicionalmente, cada volumen acotante tiene asociado costos de construcción, actualización, pruebas de interferencia. Por ejemplo, las esferas so invariantes a rotación y translación, por lo tanto no requieren ser actualizadas en comparación con los AABB no son invariantes a la rotación. Por otro lado la construcción y las pruebas de solapamiento de las esferas son más simples que los OBB’s; sin embargo, el ajuste de las esferas es menor que otros volúmenes acotantes. Finalmente, se comparan dos poliedros con siete algoritmos diferentes de los cuales cinco son librerías públicas para detección de colisiones

    Virtual reality based creation of concept model designs for CAD systems

    Get PDF
    This work introduces a novel method to overcome most of the drawbacks in traditional methods for creating design models. The main innovation is the use of virtual tools to simulate the natural physical environment in which freeform. Design models are created by experienced designers. Namely, the model is created in a virtual environment by carving a work piece with tools that simulate NC milling cutters. Algorithms have been developed to support the approach, in which the design model is created in a Virtual Reality (VR) environment and selection and manipulation of tools can be performed in the virtual space. The desianer\u27s hand movements generate the tool trajectories and they are obtained by recording the position and orientation of a hand mounted motion tracker. Swept volumes of virtual tools are generated from the geometry of the tool and its trajectories. Then Boolean operations are performed on the swept volumes and the initial virtual stock (work piece) to create the design model. Algorithms have been developed as a part of this work to integrate the VR environment with a commercial CAD/CAM system in order to demonstrate the practical applications of the research results. The integrated system provides a much more efficient and easy-to-implement process of freeform model creation than employed in current CAD/CAM software. It could prove to be the prototype for the next-generation CAD/CAM system

    Safe human-robot interaction based on dynamic sphere-swept line bounding volumes

    Get PDF
    This paper presents a geometric representation for human operators and robotic manipulators, which cooperate in the development of flexible tasks. The main goal of this representation is the implementation of real-time proximity queries, which are used by safety strategies for avoiding dangerous collisions between humans and robotic manipulators. This representation is composed of a set of bounding volumes based on swept-sphere line primitives, which encapsulate their links more precisely than previous sphere-based models. The radius of each bounding volume does not only represent the size of the encapsulated link, but it also includes an estimation of its motion. The radii of these dynamic bounding volumes are obtained from an algorithm which computes the linear velocity of each link. This algorithm has been implemented for the development of a safety strategy in a real human–robot interaction task.This work is funded by the Spanish Ministry of Education and the Spanish Ministry of Science and Innovation through the projects DPI2005-06222 and DPI2008-02647 and the grant AP2005-1458

    System integration report

    Get PDF
    Several areas that arise from the system integration issue were examined. Intersystem analysis is discussed as it relates to software development, shared data bases and interfaces between TEMPUS and PLAID, shaded graphics rendering systems, object design (BUILD), the TEMPUS animation system, anthropometric lab integration, ongoing TEMPUS support and maintenance, and the impact of UNIX and local workstations on the OSDS environment

    The flow approach to swept volume

    Get PDF
    In this thesis, a method for representing swept volume based on the sweep differential equation and sweep vector field flow is developed. This method can be used to determine the boundary representation of a swept volume generated by any polygonal object undergoing a general smooth 2-D sweep. For any given sweep and object, a. set of candidate boundary points is computed using a selection criterion based on vector field behavior. The set of candidate boundary points is then trimmed in order to obtain the true boundary of the swept volume. This trimming procedure is based on some simple topological principles and it utilizes the concept of extended sweep. This method is more general and efficient than existing approaches (e. g. it can readily deal with the cases in which the swept volume area. has holes ) and can easily be extended to 3-D sweeps; the 3-D extension is discussed but only briefly. Several examples are given to illustrate the implementation of the prototype software for 2-D sweeps which has been developed in conjunction with this research

    Virtual prototyping with surface reconstruction and freeform geometric modeling using level-set method

    Get PDF
    More and more products with complex geometries are being designed and manufactured by computer aided design (CAD) and rapid prototyping (RP) technologies. Freeform surface is a geometrical feature widely used in modern products like car bodies, airfoils and turbine blades as well as in aesthetic artifacts. How to efficiently design and generate digital prototypes with freeform surfaces is an important issue in CAD. This paper presents the development of a Virtual Sculpting system and addresses the issues of surface reconstruction from dexel data structures and freeform geometric modeling using the level-set method from distance field structure. Our virtual sculpting method is based on the metaphor of carving a solid block into a 3D freeform object using a 3D haptic input device integrated with the computer visualization. This dissertation presents the result of the study and consists primarily of four papers --Abstract, page iv

    NON-CLASSICAL REVERSE ENGINEERING CONCEPT BASED ON MACHINING FEATURE RECOGNITION

    Get PDF
    This paper is focusing on the fact that technological reconstruction is more important than the obligate geometrical reconstruction. We refer in our study to cases of reconstruction of simple mechanical parts with mainly analytical surfaces. This is because technological reconstruction can provide us with the most important information for/about CAPP (Computer-Aided Process Planning). This information is very helpful in the tasks of a designer in operation planning and also in an operation pass planning level
    • …
    corecore