2,004 research outputs found

    Discrete events: Perspectives from system theory

    Get PDF
    Systems Theory;differentiaal/ integraal-vergelijkingen

    Vibration isolation control of a contactless electromagnetic suspension system

    Get PDF

    Design and control methodology of a 3-DOF flexure-based mechanism for micro/nano-positioning

    Get PDF
    A 3-DOF (X–Y–θZ) planar flexure-based mechanism is designed and monolithically manufactured using Wire Electro-Discharge Machining (WEDM) technology. The compact flexure-based mechanism is directly driven by three piezoelectric actuators (PZTs) through decoupling mechanisms. The orthogonal configuration in the x and y directions can guarantee the decoupling translational motion in these axes. The rotational motion and translational displacement in the x direction can be decoupled by controlling the piezoelectric actuators in the x axis with the same displacement values in same and opposite motion directions, respectively. The static and dynamic models of the developed flexure-based mechanism have been developed based on the pseudo-rigid-body model methodology. The mechanical design optimization is conducted to improve the static and dynamic characteristics of the flexure-based mechanism. Finite Element Analyses (FEA) are also carried out to verify the established models and optimization results. A novel hybrid feedforward/feedback controller has been provided to eliminate/reduce the nonlinear hysteresis and external disturbance of the flexure-based mechanism. Experimental testing has been performed to examine the dynamic performance of the developed flexure-based mechanism

    Feedforward control for lightweight motion systems

    Get PDF

    Real-time Feedback of B0 Shimming at Ultra High Field MRI

    Get PDF
    Magnetic resonance imaging(MRI) is moving towards higher and higher field strengths. After 1.5T MRI scanners became commonplace, 3T scanners were introduced and once 3T scanners became commonplace, ultra high field (UHF) scanners were introduced. UHF scanners typically refer to scanners with a field strength of 7T or higher. The number of sites that utilise UHF scanners is slowly growing and the first 7T MRI scanners were recently CE certified for clinical use. Although UHF scanners have the benefit of higher signal-to-noise ratio (SNR), they come with their own challenges. One of the many challenges is the problem of inhomogeneity of the main static magnetic field(B0 field). This thesis addresses multiple aspects associated with the problem of B0 inhomogeneity. The process of homogenising the field is called "shimming". The focus of this thesis is on active shimming where extra shim coils drive DC currents to generate extra magnetic fields superimposed on the main magnetic field to correct for inhomogeneities. In particular, we looked at the following issues: algorithms for calculating optimal shim currents; global static shimming using very high order/degree spherical harmonic-based (VHOS) coils; dynamic slice-wise shimming using VHOS coils compared to a localised multi-coil array shim system; B0 field monitoring using an NMR field camera; characterisation of the shim system using a field camera; and designing a controller based on the shim system model for real-time feedback

    Minimizing Decoherence in Optical Fiber for Long Distance Quantum Communication

    Get PDF
    In this research work, I have derived analytical models for decoherence of quantum states of light and developed techniques based on Dynamical Decoupling (DD) to preserve the quantum state of polarization qubit and Orbital Angular Momentum (OAM) qudit in single-mode, multi-mode and specialized optical fibers. In subsequent work, I have derived the analytical model for decoherence of an entangled state in an optical fiber to show that such a decoherence causes loss of entanglement. I also showed that such states can be preserved with DD. In Chapter 1, I have introduced the subject of a quantum computer and its relation to quantum communication. I give a brief overview of fundamental concepts and tools required to understand the subject matter. In Chapter 2, I discuss optical fibers from the perspective of the electromagnetic wave in a waveguide and explain the modes in an optical fiber. Later, I explain about the sources of noise or refractive index fluctuation in an optical fiber and show how to numerically reproduce a model of an optical fiber. In Chapter 3, I introduce the topic of quantum decoherence and discuss in detail an open-loop control technique called Dynamical Decoupling, that is applied to the system to minimize decoherence. I discuss ideal and nonideal pulse sequences used for suppressing decoherence. In Chapter 4, I derive the analytical model for decoherence of a polarization qubit in a single-mode, multi-mode fiber, and decoherence OAM qudit in specialized multi-mode fiber. In Chapter 5, I introduce the topic of entanglement for the bipartite system and multi-partite system, and a measure called concurrence to quantify the entanglement. I then derive the analytic model for decoherence of a pure entangled state and show that decoherence causes loss of entanglement for the case of a pure and mixed Werner-like state. \break In Chapter 6, I discuss the method of numerical simulation and show by numerical simulation that polarization qubit, OAM qudit and entanglement of polarization qudit can be preserved with dynamical decoupling in an optical fiber. In Chapter 7, I have summarized the results and discuss the scope of future work. In the appendix, I have included additional research work not directly related to the current topic of decoherence in an optical fiber. To summarize my research, I have derived a model for decoherence and then numerically showed that a polarization qubit can be preserved in a single mode and multi-mode optical fiber. I also show that an OAM qudit can be preserved for a certain maximum value of quantum number l . Finally, I show that entanglement of pure and Werner mixed states can be preserved

    Energy-Optimal Control of Over-Actuated Systems - with Application to a Hybrid Feed Drive

    Full text link
    Over-actuated (or input-redundant) systems are characterized by the use of more actuators than the degrees of freedom to be controlled. They are widely used in modern mechanical systems to satisfy various control requirements, such as precision, motion range, fault tolerance, and energy efficiency. This thesis is particularly motivated by an over-actuated hybrid feed drive (HFD) which combines two complementary actuators with the aim to reduce energy consumption without sacrificing positioning accuracy in precision manufacturing. This work addresses the control challenges in achieving energy optimality without sacrificing control performance in so-called weakly input-redundant systems, which characterize the HFD and most other over-actuated systems used in practice. Using calculus of variations, an optimal control ratio/subspace is derived to specify the optimal relationship among the redundant actuators irrespective of external disturbances, leading to a new technique termed optimal control subspace-based (OCS) control allocation. It is shown that the optimal control ratio/subspace is non-causal; accordingly, a causal approximation is proposed and employed in energy-efficient structured controller design for the HFD. Moreover, the concept of control proxy is proposed as an accurate causal measurement of the deviation from the optimal control ratio/subspace. The proxy enables control allocation for weakly redundant systems to be converted into regulation problems, which can be tackled using standard controller design methodologies. Compared to an existing allocation technique, proxy-based control allocation is shown to dynamically allocate control efforts optimally without sacrificing control performance. The relationship between the proposed OCS control allocation and the traditional linear quadratic control approach is discussed for weakly input redundant systems. The two approaches are shown to be equivalent given perfect knowledge of disturbances; however, the OCS control allocation approach is shown to be more desirable for practical applications like the HFD, where disturbances are typically unknown. The OCS control allocation approach is validated in simulations and machining experiments on the HFD; significant reductions in control energy without sacrificing positioning accuracy are achieved.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146104/1/molong_1.pd
    • …
    corecore