1,626 research outputs found

    Multi-triangulations as complexes of star polygons

    Full text link
    Maximal (k+1)(k+1)-crossing-free graphs on a planar point set in convex position, that is, kk-triangulations, have received attention in recent literature, with motivation coming from several interpretations of them. We introduce a new way of looking at kk-triangulations, namely as complexes of star polygons. With this tool we give new, direct, proofs of the fundamental properties of kk-triangulations, as well as some new results. This interpretation also opens-up new avenues of research, that we briefly explore in the last section.Comment: 40 pages, 24 figures; added references, update Section

    The Relation Between Offset and Conchoid Constructions

    Full text link
    The one-sided offset surface Fd of a given surface F is, roughly speaking, obtained by shifting the tangent planes of F in direction of its oriented normal vector. The conchoid surface Gd of a given surface G is roughly speaking obtained by increasing the distance of G to a fixed reference point O by d. Whereas the offset operation is well known and implemented in most CAD-software systems, the conchoid operation is less known, although already mentioned by the ancient Greeks, and recently studied by some authors. These two operations are algebraic and create new objects from given input objects. There is a surprisingly simple relation between the offset and the conchoid operation. As derived there exists a rational bijective quadratic map which transforms a given surface F and its offset surfaces Fd to a surface G and its conchoidal surface Gd, and vice versa. Geometric properties of this map are studied and illustrated at hand of some complete examples. Furthermore rational universal parameterizations for offsets and conchoid surfaces are provided

    Bisector energy and few distinct distances

    Get PDF
    We introduce the bisector energy of an nn-point set PP in R2\mathbb{R}^2, defined as the number of quadruples (a,b,c,d)(a,b,c,d) from PP such that aa and bb determine the same perpendicular bisector as cc and dd. If no line or circle contains M(n)M(n) points of PP, then we prove that the bisector energy is O(M(n)25n125+ϵ+M(n)n2).O(M(n)^{\frac{2}{5}}n^{\frac{12}{5}+\epsilon} + M(n)n^2).. We also prove the lower bound Ω(M(n)n2)\Omega(M(n)n^2), which matches our upper bound when M(n)M(n) is large. We use our upper bound on the bisector energy to obtain two rather different results: (i) If PP determines O(n/logn)O(n/\sqrt{\log n}) distinct distances, then for any 0<α1/40<\alpha\le 1/4, either there exists a line or circle that contains nαn^\alpha points of PP, or there exist Ω(n8/512α/5ϵ)\Omega(n^{8/5-12\alpha/5-\epsilon}) distinct lines that contain Ω(logn)\Omega(\sqrt{\log n}) points of PP. This result provides new information on a conjecture of Erd\H{o}s regarding the structure of point sets with few distinct distances. (ii) If no line or circle contains M(n)M(n) points of PP, then the number of distinct perpendicular bisectors determined by PP is Ω(min{M(n)2/5n8/5ϵ,M(n)1n2})\Omega(\min\{M(n)^{-2/5}n^{8/5-\epsilon}, M(n)^{-1} n^2\}). This appears to be the first higher-dimensional example in a framework for studying the expansion properties of polynomials and rational functions over R\mathbb{R}, initiated by Elekes and R\'onyai.Comment: 18 pages, 2 figure
    corecore