13,198 research outputs found

    Quantum-to-Classical Correspondence and Hubbard-Stratonovich Dynamical Systems, a Lie-Algebraic Approach

    Full text link
    We propose a Lie-algebraic duality approach to analyze non-equilibrium evolution of closed dynamical systems and thermodynamics of interacting quantum lattice models (formulated in terms of Hubbard-Stratonovich dynamical systems). The first part of the paper utilizes a geometric Hilbert-space-invariant formulation of unitary time-evolution, where a quantum Hamiltonian is viewed as a trajectory in an abstract Lie algebra, while the sought-after evolution operator is a trajectory in a dynamic group, generated by the algebra via exponentiation. The evolution operator is uniquely determined by the time-dependent dual generators that satisfy a system of differential equations, dubbed here dual Schrodinger-Bloch equations, which represent a viable alternative to the conventional Schrodinger formulation. These dual Schrodinger-Bloch equations are derived and analyzed on a number of specific examples. It is shown that deterministic dynamics of a closed classical dynamical system occurs as action of a symmetry group on a classical manifold and is driven by the same dual generators as in the corresponding quantum problem. This represents quantum-to-classical correspondence. In the second part of the paper, we further extend the Lie algebraic approach to a wide class of interacting many-particle lattice models. A generalized Hubbard-Stratonovich transform is proposed and it is used to show that the thermodynamic partition function of a generic many-body quantum lattice model can be expressed in terms of traces of single-particle evolution operators governed by the dynamic Hubbard-Stratonovich fields. Finally, we derive Hubbard-Stratonovich dynamical systems for the Bose-Hubbard model and a quantum spin model and use the Lie-algebraic approach to obtain new non-perturbative dual descriptions of these theories.Comment: 25 pages, 1 figure; v2: citations adde

    Searching the solution space in constructive geometric constraint solving with genetic algorithms

    Get PDF
    Geometric problems defined by constraints have an exponential number of solution instances in the number of geometric elements involved. Generally, the user is only interested in one instance such that besides fulfilling the geometric constraints, exhibits some additional properties. Selecting a solution instance amounts to selecting a given root every time the geometric constraint solver needs to compute the zeros of a multi valuated function. The problem of selecting a given root is known as the Root Identification Problem. In this paper we present a new technique to solve the root identification problem. The technique is based on an automatic search in the space of solutions performed by a genetic algorithm. The user specifies the solution of interest by defining a set of additional constraints on the geometric elements which drive the search of the genetic algorithm. The method is extended with a sequential niche technique to compute multiple solutions. A number of case studies illustrate the performance of the method.Postprint (published version
    • …
    corecore