161 research outputs found

    Repetitive Delone Sets and Quasicrystals

    Full text link
    This paper considers the problem of characterizing the simplest discrete point sets that are aperiodic, using invariants based on topological dynamics. A Delone set whose patch-counting function N(T), for radius T, is finite for all T is called repetitive if there is a function M(T) such that every ball of radius M(T)+T contains a copy of each kind of patch of radius T that occurs in the set. This is equivalent to the minimality of an associated topological dynamical system with R^n-action. There is a lower bound for M(T) in terms of N(T), namely N(T) = O(M(T)^n), but no general upper bound. The complexity of a repetitive Delone set can be measured by the growth rate of its repetitivity function M(T). For example, M(T) is bounded if and only if the set is a crystal. A set is called is linearly repetitive if M(T) = O(T) and densely repetitive if M(T) = O(N(T))^{1/n}). We show that linearly repetitive sets and densely repetitive sets have strict uniform patch frequencies, i.e. the associated topological dynamical system is strictly ergodic. It follows that such sets are diffractive. In the reverse direction, we construct a repetitive Delone set in R^n which has M(T) = O(T(log T)^{2/n}(log log log T)^{4/n}), but does not have uniform patch frequencies. Aperiodic linearly repetitive sets have many claims to be the simplest class of aperiodic sets, and we propose considering them as a notion of "perfectly ordered quasicrystal".Comment: To appear in "Ergodic Theory and Dynamical Systems" vol.23 (2003). 37 pages. Uses packages latexsym, ifthen, cite and files amssym.def, amssym.te

    Quasicrystals, model sets, and automatic sequences

    Get PDF
    We survey mathematical properties of quasicrystals, first from the point of view of harmonic analysis, then from the point of view of morphic and automatic sequences. Nous proposons un tour d'horizon de propri\'et\'es math\'ematiques des quasicristaux, d'abord du point de vue de l'analyse harmonique, ensuite du point de vue des suites morphiques et automatiques

    Meyer sets, topological eigenvalues, and Cantor fiber bundles

    Full text link
    We introduce two new characterizations of Meyer sets. A repetitive Delone set in Rd\R^d with finite local complexity is topologically conjugate to a Meyer set if and only if it has dd linearly independent topological eigenvalues, which is if and only if it is topologically conjugate to a bundle over a dd-torus with totally disconnected compact fiber and expansive canonical action. "Conjugate to" is a non-trivial condition, as we show that there exist sets that are topologically conjugate to Meyer sets but are not themselves Meyer. We also exhibit a diffractive set that is not Meyer, answering in the negative a question posed by Lagarias, and exhibit a Meyer set for which the measurable and topological eigenvalues are different.Comment: minor errors corrected, references added. To appear in the Journal of the LM

    Local Complexity of Delone Sets and Crystallinity

    Full text link
    This paper characterizes when a Delone set X is an ideal crystal in terms of restrictions on the number of its local patches of a given size or on the hetereogeneity of their distribution. Let N(T) count the number of translation-inequivalent patches of radius T in X and let M(T) be the minimum radius such that every closed ball of radius M(T) contains the center of a patch of every one of these kinds. We show that for each of these functions there is a `gap in the spectrum' of possible growth rates between being bounded and having linear growth, and that having linear growth is equivalent to X being an ideal crystal. Explicitly, for N(T), if R is the covering radius of X then either N(T) is bounded or N(T) >= T/2R for all T>0. The constant 1/2R in this bound is best possible in all dimensions. For M(T), either M(T) is bounded or M(T) >= T/3 for all T>0. Examples show that the constant 1/3 in this bound cannot be replaced by any number exceeding 1/2. We also show that every aperiodic Delone set X has M(T) >= c(n)T for all T>0, for a certain constant c(n) which depends on the dimension n of X and is greater than 1/3 when n > 1.Comment: 26 pages. Uses latexsym and amsfonts package
    corecore