79,995 research outputs found

    Data-Driven Shape Analysis and Processing

    Full text link
    Data-driven methods play an increasingly important role in discovering geometric, structural, and semantic relationships between 3D shapes in collections, and applying this analysis to support intelligent modeling, editing, and visualization of geometric data. In contrast to traditional approaches, a key feature of data-driven approaches is that they aggregate information from a collection of shapes to improve the analysis and processing of individual shapes. In addition, they are able to learn models that reason about properties and relationships of shapes without relying on hard-coded rules or explicitly programmed instructions. We provide an overview of the main concepts and components of these techniques, and discuss their application to shape classification, segmentation, matching, reconstruction, modeling and exploration, as well as scene analysis and synthesis, through reviewing the literature and relating the existing works with both qualitative and numerical comparisons. We conclude our report with ideas that can inspire future research in data-driven shape analysis and processing.Comment: 10 pages, 19 figure

    Modeling and Correspondence of Topologically Complex 3D Shapes

    Full text link
    3D shape creation and modeling remains a challenging task especially for novice users. Many methods in the field of computer graphics have been proposed to automate the often repetitive and precise operations needed during the modeling of detailed shapes. This report surveys different approaches of shape modeling and correspondence especially for shapes exhibiting topological complexity. We focus on methods designed to help generate or process shapes with large number of interconnected components often found in man-made shapes. We first discuss a variety of modeling techniques, that leverage existing shapes, in easy to use creative modeling systems. We then discuss possible correspondence strategies for topologically different shapes as it is a requirement for such systems. Finally, we look at different shape representations and tools that facilitate the modification of shape topology and we focus on those particularly useful in free-form 3D modeling

    A Compositional Textual Model for Recognition of Imperfect Word Images

    Full text link
    Printed text recognition is an important problem for industrial OCR systems. Printed text is constructed in a standard procedural fashion in most settings. We develop a mathematical model for this process that can be applied to the backward inference problem of text recognition from an image. Through ablation experiments we show that this model is realistic and that a multi-task objective setting can help to stabilize estimation of its free parameters, enabling use of conventional deep learning methods. Furthermore, by directly modeling the geometric perturbations of text synthesis we show that our model can help recover missing characters from incomplete text regions, the bane of multicomponent OCR systems, enabling recognition even when the detection returns incomplete information

    Parametric Surfaces for Augmented Architecture representation

    Get PDF
    Augmented Reality (AR) represents a growing communication channel, responding to the need to expand reality with additional information, offering easy and engaging access to digital data. AR for architectural representation allows a simple interaction with 3D models, facilitating spatial understanding of complex volumes and topological relationships between parts, overcoming some limitations related to Virtual Reality. In the last decade different developments in the pipeline process have seen a significant advancement in technological and algorithmic aspects, paying less attention to 3D modeling generation. For this, the article explores the construction of basic geometries for 3D model’s generation, highlighting the relationship between geometry and topology, basic for a consistent normal distribution. Moreover, a critical evaluation about corrective paths of existing 3D models is presented, analysing a complex architectural case study, the virtual model of Villa del Verginese, an emblematic example for topological emerged problems. The final aim of the paper is to refocus attention on 3D model construction, suggesting some "good practices" useful for preventing, minimizing or correcting topological problems, extending the accessibility of AR to people engaged in architectural representation

    Conic Scan-and-Cover algorithms for nonparametric topic modeling

    Full text link
    We propose new algorithms for topic modeling when the number of topics is unknown. Our approach relies on an analysis of the concentration of mass and angular geometry of the topic simplex, a convex polytope constructed by taking the convex hull of vertices representing the latent topics. Our algorithms are shown in practice to have accuracy comparable to a Gibbs sampler in terms of topic estimation, which requires the number of topics be given. Moreover, they are one of the fastest among several state of the art parametric techniques. Statistical consistency of our estimator is established under some conditions

    Mesh2Fab: Reforming Shapes for Material-specific Fabrication

    Full text link
    As humans, we regularly associate shape of an object with its built material. In the context of geometric modeling, however, this interrelation between form and material is rarely explored. In this work, we propose a novel data-driven reforming (i.e., reshaping) algorithm that adapts an input multi-component model for a target fabrication material. The algorithm adapts both the part geometry and the inter-part topology of the input shape to better align with material specific fabrication requirements. As output, we produce the reshaped model along with respective part dimensions and inter-part junction specifications. We evaluate our algorithm on a range of man-made models and demonstrate non-trivial model reshaping examples focusing only on metal and wooden materials. We also appraise the output of our algorithm using a user study

    A Hybrid Channel Model based on WINNER for Vehicle-to-X Application

    Full text link
    V2V and V2I channel modeling became recently more of interest. To provide realistic radio channels either expensive measurements or complex ray tracing simulations are mostly used. Stochastic channel models are of low complexity but do not offer that deterministic repeatable realism. Based on the WINNER channel model and a simple single path model, a hybrid model has been developed. The concept relies on a layered structure featuring high flexibility and scalability.Comment: 5 pages, 3 figures, EURO-COST, IC1004, TD(13)0704

    Ebb: A DSL for Physical Simulation on CPUs and GPUs

    Full text link
    Designing programming environments for physical simulation is challenging because simulations rely on diverse algorithms and geometric domains. These challenges are compounded when we try to run efficiently on heterogeneous parallel architectures. We present Ebb, a domain-specific language (DSL) for simulation, that runs efficiently on both CPUs and GPUs. Unlike previous DSLs, Ebb uses a three-layer architecture to separate (1) simulation code, (2) definition of data structures for geometric domains, and (3) runtimes supporting parallel architectures. Different geometric domains are implemented as libraries that use a common, unified, relational data model. By structuring the simulation framework in this way, programmers implementing simulations can focus on the physics and algorithms for each simulation without worrying about their implementation on parallel computers. Because the geometric domain libraries are all implemented using a common runtime based on relations, new geometric domains can be added as needed, without specifying the details of memory management, mapping to different parallel architectures, or having to expand the runtime's interface. We evaluate Ebb by comparing it to several widely used simulations, demonstrating comparable performance to hand-written GPU code where available, and surpassing existing CPU performance optimizations by up to 9×\times when no GPU code exists
    • …
    corecore