634 research outputs found

    A fuzzy hierarchical decision model and its application in networking datacenters and in infrastructure acquisitions and design

    Get PDF
    According to several studies, an inordinate number of major business decisions to acquire, design, plan, and implement networking infrastructures fail. A networking infrastructure is a collaborative group of telecommunications systems providing services needed for a firm\u27s operations and business growth. The analytical hierarchy process (AHP) is a well established decision-making process used to analyze decisions related to networking infrastructures. AHP is concerned with decomposing complex decisions into a set of factors and solutions. However, AHP has difficulties in handling uncertainty in decision information. This study addressed the research question of solutions to AHP deficiencies. The solutions were accomplished through the development of a model capable of handling decisions with incomplete information and uncertain decision operating environment. This model is based on AHP framework and fuzzy sets theory. Fuzzy sets are sets whose memberships are gradual. A member of a fuzzy set may have a strong, weak, or a moderate membership. The methodology for this study was based primarily on the analytical research design method, which is neither quantitative nor qualitative, but based on mathematical concepts, proofs, and logic. The model\u27s constructs were verified by a simulated practical case study based on current literature and the input of networking experts. To further verify the research objectives, the investigator developed, tested, and validated a software platform. The results showed tangible improvements in analyzing complex networking infrastructure decisions. The ability of this model to analyze decisions with incomplete information and uncertain economic outlook can be employed in the socially important areas such as renewable energy, forest management, and environmental studies to achieve large savings

    MATLAB

    Get PDF
    A well-known statement says that the PID controller is the "bread and butter" of the control engineer. This is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that MATLAB is the "bread" in the above statement. MATLAB has became a de facto tool for the modern system engineer. This book is written for both engineering students, as well as for practicing engineers. The wide range of applications in which MATLAB is the working framework, shows that it is a powerful, comprehensive and easy-to-use environment for performing technical computations. The book includes various excellent applications in which MATLAB is employed: from pure algebraic computations to data acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user interface design for educational purposes to Simulink embedded systems

    A comparative evaluation for liver segmentation from spir images and a novel level set method using signed pressure force function

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2013Includes bibliographical references (leaves: 118-135)Text in English; Abstract: Turkish and Englishxv, 145 leavesDeveloping a robust method for liver segmentation from magnetic resonance images is a challenging task due to similar intensity values between adjacent organs, geometrically complex liver structure and injection of contrast media, which causes all tissues to have different gray level values. Several artifacts of pulsation and motion, and partial volume effects also increase difficulties for automatic liver segmentation from magnetic resonance images. In this thesis, we present an overview about liver segmentation methods in magnetic resonance images and show comparative results of seven different liver segmentation approaches chosen from deterministic (K-means based), probabilistic (Gaussian model based), supervised neural network (multilayer perceptron based) and deformable model based (level set) segmentation methods. The results of qualitative and quantitative analysis using sensitivity, specificity and accuracy metrics show that the multilayer perceptron based approach and a level set based approach which uses a distance regularization term and signed pressure force function are reasonable methods for liver segmentation from spectral pre-saturation inversion recovery images. However, the multilayer perceptron based segmentation method requires a higher computational cost. The distance regularization term based automatic level set method is very sensitive to chosen variance of Gaussian function. Our proposed level set based method that uses a novel signed pressure force function, which can control the direction and velocity of the evolving active contour, is faster and solves several problems of other applied methods such as sensitivity to initial contour or variance parameter of the Gaussian kernel in edge stopping functions without using any regularization term

    Computational methods for the analysis of functional 4D-CT chest images.

    Get PDF
    Medical imaging is an important emerging technology that has been intensively used in the last few decades for disease diagnosis and monitoring as well as for the assessment of treatment effectiveness. Medical images provide a very large amount of valuable information that is too huge to be exploited by radiologists and physicians. Therefore, the design of computer-aided diagnostic (CAD) system, which can be used as an assistive tool for the medical community, is of a great importance. This dissertation deals with the development of a complete CAD system for lung cancer patients, which remains the leading cause of cancer-related death in the USA. In 2014, there were approximately 224,210 new cases of lung cancer and 159,260 related deaths. The process begins with the detection of lung cancer which is detected through the diagnosis of lung nodules (a manifestation of lung cancer). These nodules are approximately spherical regions of primarily high density tissue that are visible in computed tomography (CT) images of the lung. The treatment of these lung cancer nodules is complex, nearly 70% of lung cancer patients require radiation therapy as part of their treatment. Radiation-induced lung injury is a limiting toxicity that may decrease cure rates and increase morbidity and mortality treatment. By finding ways to accurately detect, at early stage, and hence prevent lung injury, it will have significant positive consequences for lung cancer patients. The ultimate goal of this dissertation is to develop a clinically usable CAD system that can improve the sensitivity and specificity of early detection of radiation-induced lung injury based on the hypotheses that radiated lung tissues may get affected and suffer decrease of their functionality as a side effect of radiation therapy treatment. These hypotheses have been validated by demonstrating that automatic segmentation of the lung regions and registration of consecutive respiratory phases to estimate their elasticity, ventilation, and texture features to provide discriminatory descriptors that can be used for early detection of radiation-induced lung injury. The proposed methodologies will lead to novel indexes for distinguishing normal/healthy and injured lung tissues in clinical decision-making. To achieve this goal, a CAD system for accurate detection of radiation-induced lung injury that requires three basic components has been developed. These components are the lung fields segmentation, lung registration, and features extraction and tissue classification. This dissertation starts with an exploration of the available medical imaging modalities to present the importance of medical imaging in today’s clinical applications. Secondly, the methodologies, challenges, and limitations of recent CAD systems for lung cancer detection are covered. This is followed by introducing an accurate segmentation methodology of the lung parenchyma with the focus of pathological lungs to extract the volume of interest (VOI) to be analyzed for potential existence of lung injuries stemmed from the radiation therapy. After the segmentation of the VOI, a lung registration framework is introduced to perform a crucial and important step that ensures the co-alignment of the intra-patient scans. This step eliminates the effects of orientation differences, motion, breathing, heart beats, and differences in scanning parameters to be able to accurately extract the functionality features for the lung fields. The developed registration framework also helps in the evaluation and gated control of the radiotherapy through the motion estimation analysis before and after the therapy dose. Finally, the radiation-induced lung injury is introduced, which combines the previous two medical image processing and analysis steps with the features estimation and classification step. This framework estimates and combines both texture and functional features. The texture features are modeled using the novel 7th-order Markov Gibbs random field (MGRF) model that has the ability to accurately models the texture of healthy and injured lung tissues through simultaneously accounting for both vertical and horizontal relative dependencies between voxel-wise signals. While the functionality features calculations are based on the calculated deformation fields, obtained from the 4D-CT lung registration, that maps lung voxels between successive CT scans in the respiratory cycle. These functionality features describe the ventilation, the air flow rate, of the lung tissues using the Jacobian of the deformation field and the tissues’ elasticity using the strain components calculated from the gradient of the deformation field. Finally, these features are combined in the classification model to detect the injured parts of the lung at an early stage and enables an earlier intervention

    Fuzzy Sets, Fuzzy Logic and Their Applications

    Get PDF
    The present book contains 20 articles collected from amongst the 53 total submitted manuscripts for the Special Issue “Fuzzy Sets, Fuzzy Loigic and Their Applications” of the MDPI journal Mathematics. The articles, which appear in the book in the series in which they were accepted, published in Volumes 7 (2019) and 8 (2020) of the journal, cover a wide range of topics connected to the theory and applications of fuzzy systems and their extensions and generalizations. This range includes, among others, management of the uncertainty in a fuzzy environment; fuzzy assessment methods of human-machine performance; fuzzy graphs; fuzzy topological and convergence spaces; bipolar fuzzy relations; type-2 fuzzy; and intuitionistic, interval-valued, complex, picture, and Pythagorean fuzzy sets, soft sets and algebras, etc. The applications presented are oriented to finance, fuzzy analytic hierarchy, green supply chain industries, smart health practice, and hotel selection. This wide range of topics makes the book interesting for all those working in the wider area of Fuzzy sets and systems and of fuzzy logic and for those who have the proper mathematical background who wish to become familiar with recent advances in fuzzy mathematics, which has entered to almost all sectors of human life and activity

    Vol. 8, No. 2 (Full Issue)

    Get PDF

    Optimal Loop Placement and Models for Length-based Vehicle Classification and Stop-and-Go Traffic

    Get PDF
    Inductive loops are widely used nationwide for traffic monitoring as a data source for a variety of needs in generating traffic information for operation and planning analysis, validations of travel demand models, freight studies, pavement design, and even emission impact analysis of traffic operation. The loop data have also been used for vehicle length-based classification in many states including Ohio. The dual-loop detector consists of two single loop detectors which are placed apart at a fixed short distance, and this configuration enables the dual-loop detector data a potential real-time data source for speed and vehicle classifications. However, the existing dual-loop length-based vehicle classification model has been well evaluated against free traffic but not suitable for non-free traffic conditions (such as synchronized and stop-and-go congestion states). This project is there motivated to identify the performance of the existing length-based vehicle classification models under various traffic conditions, and develop new models against congested traffic using dual-loop data. In order to evaluate the existing models against different traffic flows, namely free flow, synchronized flow and stop-and-go flow, the concurrent ground-truth video data is employed and the software VEVID is used to extracted vehicle trajectory data from the video. This extracted vehicle trajectory data is used to compare with the event dual-loop data and to evaluate the existing vehicle classification models. As a result, the existing model is proven capable of estimating the vehicle length very well under free flow; however, large errors are identified within both synchronized and stop-and-go traffic streams. New length-based vehicle classification models, i.e., VC-Sync model and VC-Stog model are developed for cases of synchronized traffic flow and stop-and-go traffic, respectively. Comparing to the ground-truth data, the error of the estimated length by the VC-Sync model is reduced to 8.5% compared to 35.2% produced by the existing model, and the error of the VC-Stog model is reduced to 27.7% compared to 210% generated by the existing model. In order to ensure the right use of the above models under different traffic conditions, correct identification of varied traffic flow states is a critical need. For this purpose, an algorithm for identifying three traffic states, namely, free flow, synchronized flow, and stop-and-go flow, has been developed. A heuristic approach is employed for developing this algorithm with combination of occupancy and speed which are directly resulted from the dual-loop data. Thresholds of variables involved in the algorithm are recommended based on the statistical analysis of the data gained from the sampling dual-loop stations in I-71/I70 in Columbus, Ohio. In addition, loop standards of layout and installation method have been collected from 17 states in the United States. Brief analysis of the collected standards is conducted to provide fundamental information for future evaluation. Based on the detailed provided information, it may be concluded that there are no substantial differences in their standards and the most commonly used loop detectors are 6\u27 × 6\u27 square and 6\u27 × 50\u27 rectangular loops. The NEMA iv (National Electrical Manufacturers Association) inductive loop detectors have been widely used in the US

    Optimization of Urban Highway Bypass Horizontal Alignment: A Methodological Overview of Intelligent Spatial MCDA Approach Using Fuzzy AHP and GIS

    Get PDF
    Selection of urban bypass highway alternatives involves the consideration of competing and conflicting criteria and factors, which require multicriteria decision analysis. Analytic hierarchy process (AHP) is one of the most commonly used multicriteria decision making (MCDM) methods that can integrate personal preferences in performing spatial analyses on the physical and nonphysical parameters. In this paper, the traditional AHP is modified to fuzzy AHP for the determination of the optimal bypass route for Eldoret town in Kenya. The fuzzy AHP is proposed in order to take care of the vagueness type uncertainty encountered in alternative bypass location determination. In the implementation, both engineering and environmental factors comprising of physical and socioeconomic objectives were considered at different levels of decision hierarchy. The results showed that the physical objectives (elevation, slope, soils, geology, and drainage networks) and socioeconomic objectives (land-use and road networks) contributed the same weight of 0.5 towards the bypass location prioritization process. At the subcriteria evaluation level, land-use and existing road networks contributed the highest significance of 47.3% amongst the seven decision factors. Integrated with GIS-based least cost path (LCP) analysis, the fuzzy AHP results produced the most desirable and optimal route alignment, as compared to the AHP only prioritization approach
    corecore