71 research outputs found

    Geometric lattice structure of covering-based rough sets through matroids

    Get PDF
    Covering-based rough set theory is a useful tool to deal with inexact, uncertain or vague knowledge in information systems. Geometric lattice has widely used in diverse fields, especially search algorithm design which plays important role in covering reductions. In this paper, we construct four geometric lattice structures of covering-based rough sets through matroids, and compare their relationships. First, a geometric lattice structure of covering-based rough sets is established through the transversal matroid induced by the covering, and its characteristics including atoms, modular elements and modular pairs are studied. We also construct a one-to-one correspondence between this type of geometric lattices and transversal matroids in the context of covering-based rough sets. Second, sufficient and necessary conditions for three types of covering upper approximation operators to be closure operators of matroids are presented. We exhibit three types of matroids through closure axioms, and then obtain three geometric lattice structures of covering-based rough sets. Third, these four geometric lattice structures are compared. Some core concepts such as reducible elements in covering-based rough sets are investigated with geometric lattices. In a word, this work points out an interesting view, namely geometric lattice, to study covering-based rough sets

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group
    • …
    corecore