7,781 research outputs found

    A virtual environment for the design and simulated construction of prefabricated buildings

    Get PDF
    The construction industry has acknowledged that its current working practices are in need of substantial improvements in quality and efficiency and has identified that computer modelling techniques and the use of prefabricated components can help reduce times, costs, and minimise defects and problems of on-site construction. This paper describes a virtual environment to support the design and construction processes of buildings from prefabricated components and the simulation of their construction sequence according to a project schedule. The design environment can import a library of 3-D models of prefabricated modules that can be used to interactively design a building. Using Microsoft Project, the construction schedule of the designed building can be altered, with this information feeding back to the construction simulation environment. Within this environment the order of construction can be visualised using virtual machines. Novel aspects of the system are that it provides a single 3-D environment where the user can construct their design with minimal user interaction through automatic constraint recognition and view the real-time simulation of the construction process within the environment. This takes this area of research a step forward from other systems that only allow the planner to view the construction at certain stages, and do not provide an animated view of the construction process

    Freeform User Interfaces for Graphical Computing

    Get PDF
    報告番号: 甲15222 ; 学位授与年月日: 2000-03-29 ; 学位の種別: 課程博士 ; 学位の種類: 博士(工学) ; 学位記番号: 博工第4717号 ; 研究科・専攻: 工学系研究科情報工学専

    Analysis domain model for shared virtual environments

    Get PDF
    The field of shared virtual environments, which also encompasses online games and social 3D environments, has a system landscape consisting of multiple solutions that share great functional overlap. However, there is little system interoperability between the different solutions. A shared virtual environment has an associated problem domain that is highly complex raising difficult challenges to the development process, starting with the architectural design of the underlying system. This paper has two main contributions. The first contribution is a broad domain analysis of shared virtual environments, which enables developers to have a better understanding of the whole rather than the part(s). The second contribution is a reference domain model for discussing and describing solutions - the Analysis Domain Model

    Virtual reality as an educational tool in interior architecture

    Get PDF
    Ankara : The Department of Interior Architecture and Environmental Design and the Institute of Fine Arts of Bilkent Univ., 1997.Thesis (Master's) -- Bilkent University, 1997.Includes bibliographical references.This thesis discusses the use of virtual reality technology as an educational tool in interior architectural design. As a result of this discussion, it is proposed that virtual reality can be of use in aiding three-dimensional design and visualization, and may speed up the design process. It may also be of help in getting the designers/students more involved in their design projects. Virtual reality can enhance the capacity of designers to design in three dimensions. The virtual reality environment used in designing should be capable of aiding both the design and the presentation process. The tradeoffs of the technology, newly emerging trends and future directions in virtual reality are discussed.Aktaş, OrkunM.S

    A Data Model for Exploration of Temporal Virtual Reality Geographic Information Systems

    Get PDF
    Geographic information systems deal with the exploration, analysis, and presentation of geo-referenced data. Virtual reality is a type of human-computer interface that comes close to the way people perceive information in the real world. Thus, virtual reality environments become the natural paradigm for extending and enhancing the presentational and exploratory capability of GIs applications in both the spatial and temporal domains. The main motivation of this thesis is the lack of a framework that properly supports the exploration of geographic information in a multi-dimensional and multi-sensorial environment (i.e., temporal virtual reality geographic information systems). This thesis introduces a model for virtual exploration of animations. Virtual exploration of animations is a framework composed of abstract data types and a user interface that allow non-expert users to control, manipulate, analyze, and present objects\u27 behaviors in a virtual-reality environment. In the model for virtual exploration of animations, the manipulation of the dynamic environment is accomplished through a set of operations performed over abstractions that represent temporal characteristics of actions. An important feature of the model is that the temporal information is treated as first-class entities and not as a mere attribute of action\u27s representations. Therefore, entities of the temporal model have their own built-in functionality and are able to represent complex temporal structures. In an environment designed for the manipulation of the temporal characteristics of actions, the knowledge of relationships among objects\u27 behaviors plays a significant role in the model. This information comes from the knowledge base of the application domain and is represented in the model through constraints among entities of the temporal model. Such constraints vary from simply relating the end points of two intervals to a complex mechanism that takes into account all relations between sequences of intervals of cyclic behaviors. The fact that the exploration of the information takes place in a virtual reality environment imposes new requirements on the animation model. This thesis introduces a new classification of objects in a VR environment and describes the associated semantics of each element in the taxonomy. These semantics are used to direct the way an object interacts with an observer and with other objects in the environment

    Human Factors Simulation Research at the University of Pennsylvania

    Get PDF
    Jack is a Silicon Graphics Iris 4D workstation-based system for the definition, manipulation, animation, and human factors performance analysis of simulated human figures. Built on a powerful representation for articulated figures, Jack offers the interactive user a simple, intuitive, and yet extremely capable interface into any 3-D articulated world. Jack incorporates sophisticated systems for anthropometric human figure generation, multiple limb positioning under constraints, view assessment, and strength model-based performance simulation of human figures. Geometric workplace models may be easily imported into Jack. Various body geometries may be used, from simple polyhedral volumes to contour-scanned real figures. High quality graphics of environments and clothed figures are easily obtained. Descriptions of some work in progress are also included
    corecore