1,240 research outputs found

    CSM-430: Geometric Landscape of Homologous Crossover for Syntactic Trees

    Get PDF
    Geometric crossover and geometric mutation are representation-independent operators that are welldefined once a notion of distance over the solution space is defined. They were obtained as generalizations of genetic operators for binary strings and real vectors. Our geometric framework has been successfully applied to the permutation representation leading to a clarification and a natural unification of this domain. The relationship between search space, distances and genetic operators for syntactic trees is little understood. In this paper we apply the geometric framework to the syntactic tree representation and show how the wellknown structural distance is naturally associated with homologous crossover and subtree mutation

    The Effect of Distinct Geometric Semantic Crossover Operators in Regression Problems

    Get PDF
    This paper investigates the impact of geometric semantic crossover operators in a wide range of symbolic regression problems. First, it analyses the impact of using Manhattan and Euclidean distance geometric semantic crossovers in the learning process. Then, it proposes two strategies to numerically optimize the crossover mask based on mathematical properties of these operators, instead of simply generating them randomly. An experimental analysis comparing geometric semantic crossovers using Euclidean and Manhattan distances and the proposed strategies is performed in a test bed of twenty datasets. The results show that the use of different distance functions in the semantic geometric crossover has little impact on the test error, and that our optimized crossover masks yield slightly better results. For SGP practitioners, we suggest the use of the semantic crossover based on the Euclidean distance, as it achieved similar results to those obtained by more complex operators

    CSM429: Abstract Geometric Crossover for the Permutation Representation

    Get PDF
    Abstract crossover and abstract mutation are representation-independent operators that are well-defined once a notion of distance over the solution space is defined. They were obtained as generalization of genetic operators for binary strings and real vectors. In this paper we explore how the abstract geometric framework applies to the permutation representation. This representation is challenging for various reasons: because of the inherent difference between permutations and the representations that inspired the abstraction; because the whole notion of geometry over permutation spaces radically departs from traditional geometries and it is almost unexplored mathematical territory; because the many notions of distance available and their subtle interconnections make it hard to see the right distance to use, if any; because the various available interpretations of permutations make ambiguous what a permutation represents, hence, how to treat it; because of the existence of various permutation-like representations that are incorrectly confused with permutations; and finally because of the existence of many mutation and recombination operators and their many variations for the same representation. This article shows that the application of our geometric framework naturally clarifies and unifies an important domain,the permutation representation and the related operators, in which there was little or no hope to find order. In addition the abstract geometric framework is used to improve the design of crossover operators for well-known problems naturally connected with the permutation representation

    A Mathematical Unification of Geometric Crossovers Defined on Phenotype Space

    Get PDF
    Geometric crossover is a representation-independent definition of crossover based on the distance of the search space interpreted as a metric space. It generalizes the traditional crossover for binary strings and other important recombination operators for the most frequently used representations. Using a distance tailored to the problem at hand, the abstract definition of crossover can be used to design new problem specific crossovers that embed problem knowledge in the search. This paper is motivated by the fact that genotype-phenotype mapping can be theoretically interpreted using the concept of quotient space in mathematics. In this paper, we study a metric transformation, the quotient metric space, that gives rise to the notion of quotient geometric crossover. This turns out to be a very versatile notion. We give many example applications of the quotient geometric crossover

    CSM-467: Quotient Geometric Crossovers

    Get PDF
    Geometric crossover is a representation-independent definition of crossover based on the distance of the search space interpreted as a metric space. It generalizes the traditional crossover for binary strings and other important recombination operators for the most frequently used representations. Using a distance tailored to the problem at hand, the abstract definition of crossover can be used to design new problem specific crossovers that embed problem knowledge in the search. In previous work we have started studying how metric transformations of the distance associated with geometric crossover affect the original geometric crossover. In particular, we focused on the product of metric spaces. This metric transformation gives rise to the notion of product geometric crossover that allows to build new geometric crossovers combining pre-existing geometric crossovers in a simple way. In this paper, we study another metric transformation, the quotient metric space, that gives rise to the notion of quotient geometric crossover. This turns out to be a very versatile notion. We give many examples of application of the quotient geometric crossover

    Geometric Semantic Grammatical Evolution

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this record.Geometric Semantic Genetic Programming (GSGP) is a novel form of Genetic Programming (GP), based on a geometric theory of evolutionary algorithms, which directly searches the semantic space of programs. In this chapter, we extend this framework to Grammatical Evolution (GE) and refer to the new method as Geometric Semantic Grammatical Evolution (GSGE). We formally derive new mutation and crossover operators for GE which are guaranteed to see a simple unimodal fitness landscape. This surprising result shows that the GE genotypephenotype mapping does not necessarily imply low genotype-fitness locality. To complement the theory, we present extensive experimental results on three standard domains (Boolean, Arithmetic and Classifier)

    Geometric particle swarm optimization for the sudoku puzzle

    Get PDF
    Geometric particle swarm optimization (GPSO) is a recently introduced generalization of traditional particle swarm optimization (PSO) that applies to all combinatorial spaces. The aim of this paper is to demonstrate the applicability of GPSO to non-trivial combinatorial spaces. The Sudoku puzzle is a perfect candidate to test new algorithmic ideas because it is entertaining and instructive as well as a nontrivial constrained combinatorial problem. We apply GPSO to solve the sudoku puzzle
    • …
    corecore