1,734 research outputs found

    Almost-Euclidean subspaces of 1N\ell_1^N via tensor products: a simple approach to randomness reduction

    Get PDF
    It has been known since 1970's that the N-dimensional 1\ell_1-space contains nearly Euclidean subspaces whose dimension is Ω(N)\Omega(N). However, proofs of existence of such subspaces were probabilistic, hence non-constructive, which made the results not-quite-suitable for subsequently discovered applications to high-dimensional nearest neighbor search, error-correcting codes over the reals, compressive sensing and other computational problems. In this paper we present a "low-tech" scheme which, for any a>0a > 0, allows to exhibit nearly Euclidean Ω(N)\Omega(N)-dimensional subspaces of 1N\ell_1^N while using only NaN^a random bits. Our results extend and complement (particularly) recent work by Guruswami-Lee-Wigderson. Characteristic features of our approach include (1) simplicity (we use only tensor products) and (2) yielding "almost Euclidean" subspaces with arbitrarily small distortions.Comment: 11 pages; title change, abstract and references added, other minor change

    Dynamically Triangulating Lorentzian Quantum Gravity

    Get PDF
    Fruitful ideas on how to quantize gravity are few and far between. In this paper, we give a complete description of a recently introduced non-perturbative gravitational path integral whose continuum limit has already been investigated extensively in d less than 4, with promising results. It is based on a simplicial regularization of Lorentzian space-times and, most importantly, possesses a well-defined, non-perturbative Wick rotation. We present a detailed analysis of the geometric and mathematical properties of the discretized model in d=3,4. This includes a derivation of Lorentzian simplicial manifold constraints, the gravitational actions and their Wick rotation. We define a transfer matrix for the system and show that it leads to a well-defined self-adjoint Hamiltonian. In view of numerical simulations, we also suggest sets of Lorentzian Monte Carlo moves. We demonstrate that certain pathological phases found previously in Euclidean models of dynamical triangulations cannot be realized in the Lorentzian case.Comment: 41 pages, 14 figure

    Convergence of the critical finite-range contact process to super-Brownian motion above the upper critical dimension: I. The higher-point functions

    Full text link
    We consider the critical spread-out contact process in Z^d with d\ge1, whose infection range is denoted by L\ge1. In this paper, we investigate the r-point function \tau_{\vec t}^{(r)}(\vec x) for r\ge3, which is the probability that, for all i=1,...,r-1, the individual located at x_i\in Z^d is infected at time t_i by the individual at the origin o\in Z^d at time 0. Together with the results of the 2-point function in [van der Hofstad and Sakai, Electron. J. Probab. 9 (2004), 710-769; arXiv:math/0402049], on which our proofs crucially rely, we prove that the r-point functions converge to the moment measures of the canonical measure of super-Brownian motion above the upper-critical dimension 4. We also prove partial results for d\le4 in a local mean-field setting.Comment: 75 pages, 12 figure

    Handling convexity-like constraints in variational problems

    Full text link
    We provide a general framework to construct finite dimensional approximations of the space of convex functions, which also applies to the space of c-convex functions and to the space of support functions of convex bodies. We give estimates of the distance between the approximation space and the admissible set. This framework applies to the approximation of convex functions by piecewise linear functions on a mesh of the domain and by other finite-dimensional spaces such as tensor-product splines. We show how these discretizations are well suited for the numerical solution of problems of calculus of variations under convexity constraints. Our implementation relies on proximal algorithms, and can be easily parallelized, thus making it applicable to large scale problems in dimension two and three. We illustrate the versatility and the efficiency of our approach on the numerical solution of three problems in calculus of variation : 3D denoising, the principal agent problem, and optimization within the class of convex bodies.Comment: 23 page
    corecore