47 research outputs found

    Redundant Actuation of Parallel Manipulators

    Get PDF

    Design and analysis of kinematically redundant planar parallel manipulator for isotropic stiffness condition

    Get PDF
    Parallel manipulators are a form of closed loop linkages and have a wide range of applications e.g. surgical robots, flight simulators, pointing devices etc. Parallel mechanisms have many advantages over serial manipulator. Higher accuracy, stiffness and increased payload capacity are the characteristics of parallel manipulator. In spite of many advantages, they have limited workspace and more singularity regions. So, redundant architectures have become popular. However, redundancy leads to infinite solutions for inverse kinematic problem. The current work addresses this issue of resolving the redundancy of kinematically redundant planar parallel manipulators using optimization based approach. First the conventional non-redundant 3-RPR planar parallel manipulator is presented. Afterwards the kinematically redundant counterpart 3-PRPR is discussed and actuation redundant 4-RPR has been touched upon briefly. Computer simulations have been performed for the kinematic issues using MATLAB programme . The workspace of redundant and non-redundant parallel manipulators have been obtained. The generalized stiffness matrix has been derived based upon the Jacobian model and the principle of duality between kinematics and statics. A stiffness index has been formulated and the isotropy of stiffness index is used as the criterion for resolving redundancy. A novel spiral optimization metaheuristics has been used to achieve the isotropic stiffness within the selected workshape and the results are compared against particle swarm optimization. The results obtained from the novel Spiral optimization are found to be more effective and closer to the objective function as compared to the particle swarm optimization. Optimum redundant parameters are obtained as a result of the analysis. A wooden skeletal prototype has also been fabricated to enhance the understanding of the mechanism workability

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Design and implementation of an actively adjustable spring mechanism via redundant actuation

    Get PDF
    This study presents the theoretical results and experimental validation of an adjustable stiffness mechanism. The use of redundant actuation is emphasized in the design of a one-degree-of-freedom Watt II mechanism capable of independently controlling the effective stiffness without a change in equilibrium position. This approach is in contrast to previous spring mechanism designs unable to actively control the spring rate independent of deflection, and has potential applications in various types of suspension and assembly systems. Results indicate that driving the redundantly actuated, unidirectional, spring mechanism requires attaching two direct brush-type direct current motors on each of the two grounded revolute joints, and that the concept of adjustable springs has proven to be valid regardless of the friction effects. The torques are controlled with corresponding power amplifiers which incorporate current control loops, and the effective stiffness of the system is dependent on the redundant actuator torques of the motors

    Optimal Design Methods for Increasing Power Performance of Multiactuator Robotic Limbs

    Get PDF
    abstract: In order for assistive mobile robots to operate in the same environment as humans, they must be able to navigate the same obstacles as humans do. Many elements are required to do this: a powerful controller which can understand the obstacle, and power-dense actuators which will be able to achieve the necessary limb accelerations and output energies. Rapid growth in information technology has made complex controllers, and the devices which run them considerably light and cheap. The energy density of batteries, motors, and engines has not grown nearly as fast. This is problematic because biological systems are more agile, and more efficient than robotic systems. This dissertation introduces design methods which may be used optimize a multiactuator robotic limb's natural dynamics in an effort to reduce energy waste. These energy savings decrease the robot's cost of transport, and the weight of the required fuel storage system. To achieve this, an optimal design method, which allows the specialization of robot geometry, is introduced. In addition to optimal geometry design, a gearing optimization is presented which selects a gear ratio which minimizes the electrical power at the motor while considering the constraints of the motor. Furthermore, an efficient algorithm for the optimization of parallel stiffness elements in the robot is introduced. In addition to the optimal design tools introduced, the KiTy SP robotic limb structure is also presented. Which is a novel hybrid parallel-serial actuation method. This novel leg structure has many desirable attributes such as: three dimensional end-effector positioning, low mobile mass, compact form-factor, and a large workspace. We also show that the KiTy SP structure outperforms the classical, biologically-inspired serial limb structure.Dissertation/ThesisDoctoral Dissertation Mechanical Engineering 201

    Modèles élastiques et élasto‐dynamiques de robots porteurs

    Get PDF
    The report presents an advanced stiffness modeling technique for parallel manipulators composed of perfect and non-perfect serial chains. The developed technique contributes both to the stiffness modeling of serial and parallel manipulators under internal and external loadings. Particular attention has been done to enhancement of VJM-based stiffness modeling technique for the case of auxiliary loading (applied to the intermediate points). The obtained results allows us to take into account gravity forces induced by the link weights which are assumed to be applied in the intermediate points. In contrast to other works, the developed technique is able to take into account deviation of the end-platform location because of inaccuracy in the geometry of serial chains, which does not allow to assemble manipulator without internal stresses. The developed aggregation procedure combines the chain stiffness models and produces the relevant force-deflection relation, the aggregated Cartesian stiffness matrix and the reference point displacements caused by inaccuracy in kinematic chains. The developed technique can be applied to both over-constrained and under-constrained manipulators, and is suitable for the cases of both small and large deflections.ANR COROUSS

    Design and modelling of a compliant ankle rehabilitation robot redundantly driven by pneumatic muscles

    Get PDF
    Ankle sprains are the most common type of ankle injuries for the general public. Due to the lack of human manual therapy resources, it is highly demanding for robot-assisted rehabilitation training. However, most of the current robotic ankle rehab devices are driven by rigid actuators and have problems such as limited degrees of freedom, lack of safety and compliance and poor flexibility. This paper will design a new version of compliant ankle rehabilitation robot redundantly driven by pneumatic muscles (PMs) to provide full range of motion and torque ability for human ankle with enhanced safety and adaptability, attributing to the PM's high power/mass ratio, good flexibility and light weight advantages. In this paper, the driving characteristics of the PM actuators, as well as the kinematics and rehabilitation requirements of the ankle joint are analyzed. A new type of ankle rehabilitation robot that is redundantly driven by five PMs is designed and modeled. The ankle joint can be compliantly driven by the robot with full three degrees of freedom to perform dorsiflexion/plantarflexion, inversion/ eversion and adduction/abduction training. Then the kinematics and dynamics model of the rehabilitation robot is established to validate and verify the design and the models

    Distributed Actuation and Control of a Tensegrity Based Morphing Wing

    Get PDF

    Nonparametric Online Learning Control for Soft Continuum Robot: An Enabling Technique for Effective Endoscopic Navigation.

    Get PDF
    Bioinspired robotic structures comprising soft actuation units have attracted increasing research interest. Taking advantage of its inherent compliance, soft robots can assure safe interaction with external environments, provided that precise and effective manipulation could be achieved. Endoscopy is a typical application. However, previous model-based control approaches often require simplified geometric assumptions on the soft manipulator, but which could be very inaccurate in the presence of unmodeled external interaction forces. In this study, we propose a generic control framework based on nonparametric and online, as well as local, training to learn the inverse model directly, without prior knowledge of the robot's structural parameters. Detailed experimental evaluation was conducted on a soft robot prototype with control redundancy, performing trajectory tracking in dynamically constrained environments. Advanced element formulation of finite element analysis is employed to initialize the control policy, hence eliminating the need for random exploration in the robot's workspace. The proposed control framework enabled a soft fluid-driven continuum robot to follow a 3D trajectory precisely, even under dynamic external disturbance. Such enhanced control accuracy and adaptability would facilitate effective endoscopic navigation in complex and changing environments

    Practical multivariable control for multi-axis hydraulic servosystems

    Get PDF
    corecore