23,308 research outputs found

    One brick at a time: a survey of inductive constructions in rigidity theory

    Full text link
    We present a survey of results concerning the use of inductive constructions to study the rigidity of frameworks. By inductive constructions we mean simple graph moves which can be shown to preserve the rigidity of the corresponding framework. We describe a number of cases in which characterisations of rigidity were proved by inductive constructions. That is, by identifying recursive operations that preserved rigidity and proving that these operations were sufficient to generate all such frameworks. We also outline the use of inductive constructions in some recent areas of particularly active interest, namely symmetric and periodic frameworks, frameworks on surfaces, and body-bar frameworks. We summarize the key outstanding open problems related to inductions.Comment: 24 pages, 12 figures, final versio

    Amenability and geometry of semigroups

    Get PDF
    We study the connection between amenability, Følner conditions and the geometry of finitely generated semigroups. Using results of Klawe, we show that within an extremely broad class of semigroups (encompassing all groups, left cancellative semigroups, finite semigroups, compact topological semigroups, inverse semigroups, regular semigroups, commutative semigroups and semigroups with a left, right or two-sided zero element), left amenability coincides with the strong Følner condition. Within the same class, we show that a finitely generated semigroup of subexponential growth is left amenable if and only if it is left reversible. We show that the (weak) Følner condition is a left quasi-isometry invariant of finitely generated semigroups, and hence that left amenability is a left quasi-isometry invariant of left cancellative semigroups. We also give a new characterisation of the strong Følner condition in terms of the existence of weak Følner sets satisfying a local injectivity condition on the relevant translation action of the semigroup

    Automorphisms of graph products of groups from a geometric perspective

    Get PDF
    This article studies automorphism groups of graph products of arbitrary groups. We completely characterise automorphisms that preserve the set of conjugacy classes of vertex groups as those automorphisms that can be decomposed as a product of certain elementary automorphisms (inner automorphisms, partial conjugations, automorphisms associated to symmetries of the underlying graph). This allows us to completely compute the automorphism group of certain graph products, for instance in the case where the underlying graph is finite, connected, leafless and of girth at least 55. If in addition the underlying graph does not contain separating stars, we can understand the geometry of the automorphism groups of such graph products of groups further: we show that such automorphism groups do not satisfy Kazhdan's property (T) and are acylindrically hyperbolic. Applications to automorphism groups of graph products of finite groups are also included. The approach in this article is geometric and relies on the action of graph products of groups on certain complexes with a particularly rich combinatorial geometry. The first such complex is a particular Cayley graph of the graph product that has a quasi-median geometry, a combinatorial geometry reminiscent of (but more general than) CAT(0) cube complexes. The second (strongly related) complex used is the Davis complex of the graph product, a CAT(0) cube complex that also has a structure of right-angled building.Comment: 36 pages. The article subsumes and vastly generalises our preprint arXiv:1803.07536. To appear in Proc. Lond. Math. So

    Recognising Multidimensional Euclidean Preferences

    Full text link
    Euclidean preferences are a widely studied preference model, in which decision makers and alternatives are embedded in d-dimensional Euclidean space. Decision makers prefer those alternatives closer to them. This model, also known as multidimensional unfolding, has applications in economics, psychometrics, marketing, and many other fields. We study the problem of deciding whether a given preference profile is d-Euclidean. For the one-dimensional case, polynomial-time algorithms are known. We show that, in contrast, for every other fixed dimension d > 1, the recognition problem is equivalent to the existential theory of the reals (ETR), and so in particular NP-hard. We further show that some Euclidean preference profiles require exponentially many bits in order to specify any Euclidean embedding, and prove that the domain of d-Euclidean preferences does not admit a finite forbidden minor characterisation for any d > 1. We also study dichotomous preferencesand the behaviour of other metrics, and survey a variety of related work.Comment: 17 page

    Geometric Property (T)

    Full text link
    This paper discusses `geometric property (T)'. This is a property of metric spaces introduced in earlier work of the authors for its applications to K-theory. Geometric property (T) is a strong form of `expansion property': in particular for a sequence of finite graphs (Xn)(X_n), it is strictly stronger than (Xn)(X_n) being an expander in the sense that the Cheeger constants h(Xn)h(X_n) are bounded below. We show here that geometric property (T) is a coarse invariant, i.e. depends only on the large-scale geometry of a metric space XX. We also discuss the relationships between geometric property (T) and amenability, property (T), and various coarse geometric notions of a-T-menability. In particular, we show that property (T) for a residually finite group is characterised by geometric property (T) for its finite quotients.Comment: Version two corrects some typos and a mistake in the proof of Lemma 8.
    • …
    corecore