27,233 research outputs found

    Détection automatique des changements du bâti en milieu urbain sur des images à très haute résolution spatiale (Ikonos et QuickBird) en utilisant des données cartographiques numériques

    Get PDF
    The updating of cartographic databases in urban environments is a difficult and expensive task. It can be facilitated by an automatic change detection method. Several methods have been developed for medium and low spatial resolution images. These methods are not adapted for the very high spatial resolution images (VHSR) and are not applicable in urban environment. This study proposes a new method for change detection of buildings in urban environments from VHSR images and using existing digital cartographic data. The proposed methodology is composed of several stages. The existing knowledge on the buildings and the other urban objects are first modelled and saved in a knowledge base. All change detection rules are defined at this stage. Then, the image is segmented. The parameters of segmentation are computed thanks to the integration between the image and the geographical database (GDB). Thereafter, the segmented image is analyzed using the knowledge base to localize the segments where the change of building is likely to occur. The change detection rules are then applied on these segments to identify the segments that represent the changes of buildings. These changes represent the updates of buildings to add to the geographical database. Finally, the map representing changes is assessed before being integrated in the geographical database. The data used in this research concern the city of Sherbrooke (Quebec, Canada) and the city of Rabat (Morocco). For Sherbrooke, we used an Ikonos image acquired in October 2004, an Ikonos image acquired in July 2006 and a GDB at the scale of 1:20,000. For Rabat, a QuickBird image acquired in August 2004 has been used with a GDB at the scale of 1:10,000. The results of tests on several zones are encouraging. Indeed, the rate of good detection is of 90%. Concerning the geometric precision of detection, the mean error is 3 m for Ikonos and 2 m for QuickBird. The proposed method presents some limitations on the detection of the exact contours of the buildings. It could be improved by including a shape post-analysis of detected buildings. The proposed method can be integrated in a cartographic update process or as a method for the quality assessment of a topographic database

    Object-Based Greenhouse Classification from GeoEye-1 and WorldView-2 Stereo Imagery

    Get PDF
    Remote sensing technologies have been commonly used to perform greenhouse detection and mapping. In this research, stereo pairs acquired by very high-resolution optical satellites GeoEye-1 (GE1) and WorldView-2 (WV2) have been utilized to carry out the land cover classification of an agricultural area through an object-based image analysis approach, paying special attention to greenhouses extraction. The main novelty of this work lies in the joint use of single-source stereo-photogrammetrically derived heights and multispectral information from both panchromatic and pan-sharpened orthoimages. The main features tested in this research can be grouped into different categories, such as basic spectral information, elevation data (normalized digital surface model; nDSM), band indexes and ratios, texture and shape geometry. Furthermore, spectral information was based on both single orthoimages and multiangle orthoimages. The overall accuracy attained by applying nearest neighbor and support vector machine classifiers to the four multispectral bands of GE1 were very similar to those computed from WV2, for either four or eight multispectral bands. Height data, in the form of nDSM, were the most important feature for greenhouse classification. The best overall accuracy values were close to 90%, and they were not improved by using multiangle orthoimages

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection
    • …
    corecore