6,015 research outputs found

    PYRO-NN: Python Reconstruction Operators in Neural Networks

    Full text link
    Purpose: Recently, several attempts were conducted to transfer deep learning to medical image reconstruction. An increasingly number of publications follow the concept of embedding the CT reconstruction as a known operator into a neural network. However, most of the approaches presented lack an efficient CT reconstruction framework fully integrated into deep learning environments. As a result, many approaches are forced to use workarounds for mathematically unambiguously solvable problems. Methods: PYRO-NN is a generalized framework to embed known operators into the prevalent deep learning framework Tensorflow. The current status includes state-of-the-art parallel-, fan- and cone-beam projectors and back-projectors accelerated with CUDA provided as Tensorflow layers. On top, the framework provides a high level Python API to conduct FBP and iterative reconstruction experiments with data from real CT systems. Results: The framework provides all necessary algorithms and tools to design end-to-end neural network pipelines with integrated CT reconstruction algorithms. The high level Python API allows a simple use of the layers as known from Tensorflow. To demonstrate the capabilities of the layers, the framework comes with three baseline experiments showing a cone-beam short scan FDK reconstruction, a CT reconstruction filter learning setup, and a TV regularized iterative reconstruction. All algorithms and tools are referenced to a scientific publication and are compared to existing non deep learning reconstruction frameworks. The framework is available as open-source software at \url{https://github.com/csyben/PYRO-NN}. Conclusions: PYRO-NN comes with the prevalent deep learning framework Tensorflow and allows to setup end-to-end trainable neural networks in the medical image reconstruction context. We believe that the framework will be a step towards reproducible researchComment: V1: Submitted to Medical Physics, 11 pages, 7 figure

    Analysis of Parallel Montgomery Multiplication in CUDA

    Get PDF
    For a given level of security, elliptic curve cryptography (ECC) offers improved efficiency over classic public key implementations. Point multiplication is the most common operation in ECC and, consequently, any significant improvement in perfor- mance will likely require accelerating point multiplication. In ECC, the Montgomery algorithm is widely used for point multiplication. The primary purpose of this project is to implement and analyze a parallel implementation of the Montgomery algorithm as it is used in ECC. Specifically, the performance of CPU-based Montgomery multiplication and a GPU-based implementation in CUDA are compared

    Large-scale Ferrofluid Simulations on Graphics Processing Units

    Full text link
    We present an approach to molecular-dynamics simulations of ferrofluids on graphics processing units (GPUs). Our numerical scheme is based on a GPU-oriented modification of the Barnes-Hut (BH) algorithm designed to increase the parallelism of computations. For an ensemble consisting of one million of ferromagnetic particles, the performance of the proposed algorithm on a Tesla M2050 GPU demonstrated a computational-time speed-up of four order of magnitude compared to the performance of the sequential All-Pairs (AP) algorithm on a single-core CPU, and two order of magnitude compared to the performance of the optimized AP algorithm on the GPU. The accuracy of the scheme is corroborated by comparing the results of numerical simulations with theoretical predictions
    • …
    corecore