1,371 research outputs found
Nuclear Magnetohydrodynamic EMP, Solar Storms, and Substorms
In addition to a fast electromagnetic pulse (EMP), a high altitude nuclear
burst produces a relatively slow magnetohydrodynarnic EMP (MHD EMP), whose
effects are like those from solar storm geomagnetically induced currents (SS
GIC). The MHD EMP electric field E < 10^-1 V/m and lasts < 10^2 sec, whereas
for solar storms E > 10^-2 V/m and lasts >10^3 sec. Although the solar storm
electric field is lower than MHD EMP, the solar storm effects are generally
greater due to their much longer duration. Substorms produce much smaller
effects than SS GIC, but occur much more frequently. This paper describes the
physics of such geomagnetic disturbances and analyzes their effects.Comment: 29 pages, 14 figures, 5 table
Geomagnetically Induced Currents in the Irish Power Network during Geomagnetic Storms
Geomagnetically induced currents (GICs) are a well-known terrestrial space
weather hazard. They occur in power transmission networks and are known to have
adverse effects in both high and mid-latitude countries. Here, we study GICs in
the Irish power transmission network (geomagnetic latitude 54.7--58.5
N) during five geomagnetic storms (06-07 March 2016, 20-21 December 2015, 17-18
March 2015, 29-31 October 2003 and 13-14 March 1989). We simulate electric
fields using a plane wave method together with two ground resistivity models,
one of which is derived from magnetotelluric measurements (MT model). We then
calculate GICs in the 220, 275 and 400~kV transmission network. During the
largest of the storm periods studied, the peak electric field was calculated to
be as large as 3.8~V~km\textsuperscript{-1}, with associated GICs of up to 23~A
using our MT model. Using our homogenous resistivity model, those peak values
were 1.46~V~km\textsuperscript{-1} and 25.8~A. We find that three 400 and
275~kV substations are the most likely locations for the Irish transformers to
experience large GICs.Comment: 14 pages, 11 Figures, 4 Table
Present day challenges in understanding the geomagnetic hazard to national power grids
Power grids and pipeline networks at all latitudes are known to be at risk from the natural hazard of geomagnetically induced currents. At a recent workshop in South Africa, UK and South African scientists and engineers discussed the current understanding of this hazard, as it affects major power systems in Europe and Africa. They also summarised, to better inform the public and industry, what can be said with some certainty about the hazard and what research is yet required to develop useful tools for geomagnetic hazard mitigation
Improving the modeling of geomagnetically induced currents in Spain
Vulnerability assessments of the risk posed by geomagnetically induced currents (GICs) to power transmission grids benefit from accurate knowledge of the geomagnetic field variations at each node of the grid, the Earth's geoelectrical structures beneath them, and the topology and relative resistances of the grid elements in the precise instant of a storm. The results of previous analyses on the threat posed by GICs to the Spanish 400 kV grid are improved in this study by resorting to different strategies to progress in the three aspects identified above. First, although at midlatitude regions the source fields are rather uniform, we have investigated the effect of their spatial changes by interpolating the field from the records of several close observatories with different techniques. Second, we have performed a magnetotelluric (MT) sounding in the vicinity of one of the transformers where GICs are measured to determine the geoelectrical structure of the Earth, and we have identified the importance of estimating the MT impedance tensor when predicting GIC, especially where the effect of lateral heterogeneities is important. Finally, a sensitivity analysis to network changes has allowed us to assess the reliability of both the information about the network topology and resistances, and the assumptions made when all the details or the network status are not available. In our case, the most essential issue to improve the coincidence between model predictions and actual observations came from the use of realistic geoelectric information involving local MT measurements
An Overview of Science Challenges Pertaining to our Understanding of Extreme Geomagnetically Induced Currents
Vulnerability of man-made infrastructure to Earth-directed space weather events is a serious concern for today's technology-dependent society. Space weather-driven geomagnetically induced currents (GICs) can disrupt operation of extended electrically conducting technological systems. The threat of adverse impacts on critical technological infrastructure, like power grids, oil and gas pipelines, and communication networks, has sparked renewed interest in extreme space weather. Because extreme space weather events have low occurrence rate but potentially high impact, this presents a major challenge for our understanding of extreme GIC activity. In this chapter, we discuss some of the key science challenges pertaining to our understanding of extreme events. In addition, we present an overview of GICs including highlights of severe impacts over the last 80 years and recent U.S. Federal actions relevant to this community
Relationship between Interplanetary Conditions and Changes in the Geomagnetic Field to Understand the Causes of Geomagnetically Induced Currents
Geomagnetically Induced Currents (GICs) are electrical currents induced in ground-level conductive networks, like power lines and pipelines, which can cause costly damage to infrastructure. GICs are induced in response to fast changes in the geomagnetic field (GMF) according to Faraday’s Law of Electromagnetic Induction. The purpose of this study was to identify the parameters of the solar wind and interplanetary shocks which are most strongly correlated with large, fast changes in the magnitude of the GMF. GMF data is 1-min averaged time series of mid- and high-latitude magnetometer measurements in the Sym/H and AL indices, respectively. For solar wind data, I used an existing database of fast-forward interplanetary shocks compiled from measurements made by the WIND spacecraft. I performed t-tests, and created linear fits to determine which parameter(s) are likely responsible for large 1-min changes in the Sym/H and AL indices. Large changes in Sym/H are most strongly correlated with speed jump at the shock and the change in the square root of dynamic pressure and large changes in AL with speed jump at the shock. To determine the causes of events with larger 1-min changes than the fit, I created a subset of shocks which follow the trend with the same distribution as the outliers to find causes for the outliers. This revealed that faster shock and stronger upstream magnetic field are associated with stronger GMF changes
Influences of various magnetospheric and ionospheric current systems on geomagnetically induced currents around the world
Ground-based observations of geomagnetic field (B field) are usually a superposition of signatures from different source current systems in the magnetosphere and ionosphere. Fluctuating B fields generate geoelectric fields (E fields), which drive geomagnetically induced currents (GIC) in technological conducting media at the Earth's surface. We introduce a new Fourier integral B field model of east/west directed line current systems over a one-dimensional multilayered Earth in plane geometry. Derived layered-Earth profiles, given in the literature, are needed to calculate the surface impedance, and therefore reflection coefficient in the integral. The 2003 Halloween storm measurements were Fourier transformed for B field spectrum Levenberg-Marquardt least squares inversion over latitude. The inversion modeled strengths of the equatorial electrojets, auroral electrojets, and ring currents were compared to the forward problem computed strength. It is found the optimized and direct results match each other closely and supplement previous established studies about these source currents. Using this model, a data set of current system magnitudes may be used to develop empirical models linking solar wind activity to magnetospheric current systems. In addition, the ground E fields are also calculated directly, which serves as a proxy for computing GIC in conductor-based networks
Modelling the effects of space weather at the Earth’s surface : a UK geoelectric field model
Geomagnetically Induced Currents (GIC), which can flow in technological systems such as power transmission grids, are a consequence of the geoelectric field induced at the surface of the Earth during geomagnetic storms. This poster describes the development of a new 3D 'Thin-Sheet' geoelectric field model which covers the whole of the UK and includes the influence of the surrounding shelf seas. The model can be used to compute the response of the geoelectric field to geomagnetic storms. In conjunction
with a power grid model this enables us to estimate GIC flow in power networks. As an example, we consider the major geomagnetic storm of October 2003. It is envisaged that the model will form one component of a near
real time GIC warning package which is currently being developed by the British Geological Survey (BGS) in conjunction with Scottish Power Plc. The magnetic field associated with the induced geoelectric field is easily calculated. Thus, the electric field model may also be of interest to those studying the effect of internal (induced) geomagnetic field signals on the total measured geomagnetic field
- …
