758 research outputs found

    Pemodelan Geoid Lokal Kota Semarang Berdasarkan Model Geopotensial Globalgrace

    Full text link
    Semarang geoid models determined by gravimetric method. The wavelength components used in the gravimetric method is long-wavelength, medium-wavelength, and short-wavelength. The long-wavelength component obtained from global geopotential model EGM2008, GGM03C, and GIF48 with maximum degree 360. The medium-wavelength component derived from terrestrial gravity, and the short-wavelength component obtained from the topography or terrain. Data processing in the GRAVSOFT shows the undulations gravimetric value of 24.902 meters to 25.596 meters from the EGM2008 models; 25.417 meters to 25.036 meters from the GGM03C models; and 23.746 meters to 24.442 meters from the GIF48 models.GRACEglobal geopotential model evaluation is done by comparing the local geoid undulation pattern of Semarang with the regional geoid undulation pattern of Java, also subtracting the gravimetric undulation and the geometric undulation. The local geoid undulation pattern of Semarang have conformity with the regional geoid undulation pattern of Java. The highest accuracy of the geoid undulation of Semarang generated by the GGM03C model with an error value of 1.48 meters, the lowest accuracy generated by the GIF48 model with an error value of 2.691 meters

    Methods for the computation of detailed geoids and their accuracy

    Get PDF
    Two methods for the computation of geoid undulations using potential coefficients and 1 deg x 1 deg terrestrial anomaly data are examined. It was found that both methods give the same final result but that one method allows a more simplified error analysis. Specific equations were considered for the effect of the mass of the atmosphere and a cap dependent zero-order undulation term was derived. Although a correction to a gravity anomaly for the effect of the atmosphere is only about -0.87 mgal, this correction causes a fairly large undulation correction that was not considered previously. The accuracy of a geoid undulation computed by these techniques was estimated considering anomaly data errors, potential coefficient errors, and truncation (only a finite set of potential coefficients being used) errors. It was found that an optimum cap size of 20 deg should be used. The geoid and its accuracy were computed in the Geos 3 calibration area using the GEM 6 potential coefficients and 1 deg x 1 deg terrestrial anomaly data. The accuracy of the computed geoid is on the order of plus or minus 2 m with respect to an unknown set of best earth parameter constants

    Power spectra of geoid undulations

    Get PDF
    Data from spacecraft altimeters are expected to contribute to an improved determination of the marine geoid. To better define altimeter system design requirements for geoid recovery, amplitudes of geoid undulations at short wavelengths were examined. Models of detailed geoids in selected areas around the earth, developed from a combination of satellite derived spherical harmonics and 1 deg-by-1 deg area mean free-air gravity anomalies, were subjected to a spectral analysis. The resulting undulation power spectra were compared to existing estimates for the magnitude of geoid undulations at short wavelengths. The undulation spectra were found to be consistent with Kaula's rule of thumb, following an inverse third power relationship with spatial frequency for wavelengths at least as small as 300 km. The requirements imposed by this relationship on altimeter accuracy, data rate, and horizontal resolution to meet the goal of a detailed geoid description are discussed

    USING SURFACE FITTING AND BUFFER ANALYSIS TO ESTIMATE REGIONAL GEOIDAL UNDULATION

    Get PDF
    Geoidal undulation is the distance from the surface of an ellipsoid to the surface of a geoid measured along a line that is perpendicular to the ellipsoid. This paper describes how the geoidal undulation can be derived from the orthometric height, Global Navigation Satellite System geodetic height, and a surface model. Various surfaces fitting using the plane coordinates of the reference points and analysis with different buffers were used to determine the geoid undulation Taiwan. The results show that the quadratic surface model outperformed other surface models, yielding a buffer radius ranging from 15 to 25 km. According to the results, the accuracy of regional geoid undulation (city or state) can be improved through this process of surface fitting

    Estimation of the ocean geoid near the Blake Escarpment using GEOS-3 satellite altimetry

    Get PDF
    The accuracy with which the local ocean geoid structure could be determined using satellite altimetry data was investigated. The undulation and along-track component of the vertical deflection for selected passes of GEOS-3 near the Blake Escarpment were estimated and compared with independent analogous estimates based on U. S. Navy surface gravimetric survey data. The results of these comparisons show agreement in the geoid undulation values generally to within one or two meters. The nature of the discrepancy in the undulation values was primarily that of a bias error believed to be due essentially to radial orbit uncertainties. The agreement between the vertical deflection estimates was not significantly affected by orbit uncertainties over the track lengths considered in this study (100 - 1500 km), and the comparisons show typical rms differences of between one and two arc secs. In addition, the capability of the altimeter to resolve short wavelength features of the geoid was determined. This analysis involved spectrum and cross spectrum analysis of sets of closely spaced parallel subtracks to determine statistically significant short wavelength geoid resolution capability. The results of this analysis show that resolution can be achieved down to wavelengths as short as 30 km - 80 km depending on regional geoid variations

    ALTKAL: An optimum linear filter for GEOS-3 altimeter data

    Get PDF
    ALTKAL is a computer program designed to smooth sea surface height data obtained from the GEOS 3 altimeter, and to produce minimum variance estimates of sea surface height and sea surface slopes, along with their standard derivations. The program operates by processing the data through a Kalman filter in both the forward and backward directions, and optimally combining the results. The sea surface height signal is considered to have a geoid signal, modeled by a third order Gauss-Markov process, corrupted by additive white noise. The governing parameters for the signal and noise processes are the signal correlation length and the signal-to-noise ratio. Mathematical derivations of the filtering and smoothing algorithms are presented. The smoother characteristics are illustrated by giving the frequency response, the data weighting sequence and the transfer function of a realistic steady-state smoother example. Based on nominal estimates for geoidal undulation amplitude and correlation length, standard deviations for the estimated sea surface height and slope are 12 cm and 3 arc seconds, respectively

    Accuracy of the determination of mean anomalies and mean geoid undulations from a satellite gravity field mapping mission

    Get PDF
    Improved knowledge of the Earth's gravity field was obtained from new and improved satellite measurements such as satellite to satellite tracking and gradiometry. This improvement was examined by estimating the accuracy of the determination of mean anomalies and mean undulations in various size blocks based on an assumed mission. In this report the accuracy is considered through a commission error due to measurement noise propagation and a truncation error due to unobservable higher degree terms in the geopotential. To do this the spectrum of the measurement was related to the spectrum of the disturbing potential of the Earth's gravity field. Equations were derived for a low-low (radial or horizontal separation) mission and a gradiometer mission. For a low-low mission of six month's duration, at an altitude of 160 km, with a data noise of plus or minus 1 micrometers sec for a four second integration time, we would expect to determine 1 deg x 1 deg mean anomalies to an accuracy of plus or minus 2.3 mgals and 1 deg x 1 deg mean geoid undulations to plus or minus 4.3 cm. A very fast Fortran program is available to study various mission configurations and block sizes

    The Ohio State 1991 geopotential and sea surface topography harmonic coefficient models

    Get PDF
    The computation is described of a geopotential model to deg 360, a sea surface topography model to deg 10/15, and adjusted Geosat orbits for the first year of the exact repeat mission (ERM). This study started from the GEM-T2 potential coefficient model and it's error covariance matrix and Geosat orbits (for 22 ERMs) computed by Haines et al. using the GEM-T2 model. The first step followed the general procedures which use a radial orbit error theory originally developed by English. The Geosat data was processed to find corrections to the a priori geopotential model, corrections to a radial orbit error model for 76 Geosat arcs, and coefficients of a harmonic representation of the sea surface topography. The second stage of the analysis took place by doing a combination of the GEM-T2 coefficients with 30 deg gravity data derived from surface gravity data and anomalies obtained from altimeter data. The analysis has shown how a high degree spherical harmonic model can be determined combining the best aspects of two different analysis techniques. The error analysis was described that has led to the accuracy estimates for all the coefficients to deg 360. Significant work is needed to improve the modeling effort

    Enhancement of height system for Malaysia using space technology: the study of the datum bias inconsistencies in Peninsular Malaysia

    Get PDF
    The algorithm for orthometric height transfer using GPS has been widely presented. Its practical limitations are mostly due to datum bias inconsistencies and lack of precise geoid. In most applications, datum biases are assumed to be systematic over short baselines and therefore could be eliminated by differential heighting techniques. In this study, optimal algorithms were investigated to model biases between local vertical datum in Peninsular Malaysia and the datums implied by by EGM96, OSU91A and the regional Gravimetric Geoid in South_East Asia. The study has indicated that local vertical datum is not physically parallel to the datums implied by the above geoids. The shift parameters between the datums implied by the GPS/leveling data, and the EGM96, OSU91A and the gravimetric datums are about – 41cm, -54 cm and – 8 cm respectively. Also the maximum tilts of the planes fitting the residual geoids above these datums relative to GPS/Leveling datum are of the order of 36, 51 and 33 centimeters per degree. It is therefore necessary to take into account the effect of inconsistent datum bias particularly for baseline height transfer. The level of accuracy achieved by the bias corrected relative orthometric height differences of the EGM96, OSU91A and the gravimetric geoid models combined with GPS/leveling data for baseline lengths up to 36 km, is sufficient to replace the conventional tedious, time consuming ordinary leveling technique for rapid height transfer for land surveying and engineering applications

    Reducing the error of geoid undulation computations by modifying Stokes' function

    Get PDF
    The truncation theory as it pertains to the calculation of geoid undulations based on Stokes' integral, but from limited gravity data, is reexamined. Specifically, the improved procedures of Molodenskii et al. are shown through numerical investigations to yield substantially smaller errors than the conventional method that is often applied in practice. In this improved method, as well as in a simpler alternative to the conventional approach, the Stokes' kernel is suitably modified in order to accelerate the rate of convergence of the error series. These modified methods, however, effect a reduction in the error only if a set of low-degree potential harmonic coefficients is utilized in the computation. Consider, for example, the situation in which gravity anomalies are given in a cap of radius 10 deg and the GEM 9 (20,20) potential field is used. Then, typically, the error in the computed undulation (aside from the spherical approximation and errors in the gravity anomaly data) according to the conventional truncation theory is 1.09 m; with Meissl's modification it reduces to 0.41m, while Molodenskii's improved method gives 0.45 m. A further alteration of Molodenskii's method is developed and yields an RMS error of 0.33 m. These values reflect the effect of the truncation, as well as the errors in the GEM 9 harmonic coefficients. The considerable improvement, suggested by these results, of the modified methods over the conventional procedure is verified with actual gravity anomaly data in two oceanic regions, where the GEOS-3 altimeter geoid serves as the basis for comparison. The optimal method of truncation, investigated by Colombo, is extremely ill-conditioned. It is shown that with no corresponding regularization, this procedure is inapplicable
    corecore