1,668 research outputs found

    Geography Aware Virtual Machine Migrations and Replications for Distributed Cloud Data Centers

    Get PDF
    Cloud computing provides access to computing resources for a fee. Client applications and services can be hosted in clouds. Cloud computing typically uses a network of data centers that are geographically dispersed. The distance between clients and applications is impacted by geographical distance. The geographical distribution of client requests can be random and difficult to predict. This suggests a need to reconsider the placement of services at run-time through migration. This thesis describes a framework based on software-defined networking (SDN) principles. It demonstrates algorithms that are periodically executed and determine candidate services to migrate and replicate as well as target data centers to migrate to and replicate to and an evaluation. The evaluation shows that effectiveness of the algorithms

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Horizon Report 2009

    Get PDF
    El informe anual Horizon investiga, identifica y clasifica las tecnologías emergentes que los expertos que lo elaboran prevén tendrán un impacto en la enseñanza aprendizaje, la investigación y la producción creativa en el contexto educativo de la enseñanza superior. También estudia las tendencias clave que permiten prever el uso que se hará de las mismas y los retos que ellos suponen para las aulas. Cada edición identifica seis tecnologías o prácticas. Dos cuyo uso se prevé emergerá en un futuro inmediato (un año o menos) dos que emergerán a medio plazo (en dos o tres años) y dos previstas a más largo plazo (5 años)

    Energy and performance-optimized scheduling of tasks in distributed cloud and edge computing systems

    Get PDF
    Infrastructure resources in distributed cloud data centers (CDCs) are shared by heterogeneous applications in a high-performance and cost-effective way. Edge computing has emerged as a new paradigm to provide access to computing capacities in end devices. Yet it suffers from such problems as load imbalance, long scheduling time, and limited power of its edge nodes. Therefore, intelligent task scheduling in CDCs and edge nodes is critically important to construct energy-efficient cloud and edge computing systems. Current approaches cannot smartly minimize the total cost of CDCs, maximize their profit and improve quality of service (QoS) of tasks because of aperiodic arrival and heterogeneity of tasks. This dissertation proposes a class of energy and performance-optimized scheduling algorithms built on top of several intelligent optimization algorithms. This dissertation includes two parts, including background work, i.e., Chapters 3–6, and new contributions, i.e., Chapters 7–11. 1) Background work of this dissertation. Chapter 3 proposes a spatial task scheduling and resource optimization method to minimize the total cost of CDCs where bandwidth prices of Internet service providers, power grid prices, and renewable energy all vary with locations. Chapter 4 presents a geography-aware task scheduling approach by considering spatial variations in CDCs to maximize the profit of their providers by intelligently scheduling tasks. Chapter 5 presents a spatio-temporal task scheduling algorithm to minimize energy cost by scheduling heterogeneous tasks among CDCs while meeting their delay constraints. Chapter 6 gives a temporal scheduling algorithm considering temporal variations of revenue, electricity prices, green energy and prices of public clouds. 2) Contributions of this dissertation. Chapter 7 proposes a multi-objective optimization method for CDCs to maximize their profit, and minimize the average loss possibility of tasks by determining task allocation among Internet service providers, and task service rates of each CDC. A simulated annealing-based bi-objective differential evolution algorithm is proposed to obtain an approximate Pareto optimal set. A knee solution is selected to schedule tasks in a high-profit and high-quality-of-service way. Chapter 8 formulates a bi-objective constrained optimization problem, and designs a novel optimization method to cope with energy cost reduction and QoS improvement. It jointly minimizes both energy cost of CDCs, and average response time of all tasks by intelligently allocating tasks among CDCs and changing task service rate of each CDC. Chapter 9 formulates a constrained bi-objective optimization problem for joint optimization of revenue and energy cost of CDCs. It is solved with an improved multi-objective evolutionary algorithm based on decomposition. It determines a high-quality trade-off between revenue maximization and energy cost minimization by considering CDCs’ spatial differences in energy cost while meeting tasks’ delay constraints. Chapter 10 proposes a simulated annealing-based bees algorithm to find a close-to-optimal solution. Then, a fine-grained spatial task scheduling algorithm is designed to minimize energy cost of CDCs by allocating tasks among multiple green clouds, and specifies running speeds of their servers. Chapter 11 proposes a profit-maximized collaborative computation offloading and resource allocation algorithm to maximize the profit of systems and guarantee that response time limits of tasks are met in cloud-edge computing systems. A single-objective constrained optimization problem is solved by a proposed simulated annealing-based migrating birds optimization. This dissertation evaluates these algorithms, models and software with real-life data and proves that they improve scheduling precision and cost-effectiveness of distributed cloud and edge computing systems

    Data center's telemetry reduction and prediction through modeling techniques

    Get PDF
    Nowadays, Cloud Computing is widely used to host and deliver services over the Internet. The architecture of clouds is complex due to its heterogeneous nature of hardware and is hosted in large scale data centers. To effectively and efficiently manage such complex infrastructure, constant monitoring is needed. This monitoring generates large amounts of telemetry data streams (e.g. hardware utilization metrics) which are used for multiple purposes including problem detection, resource management, workload characterization, resource utilization prediction, capacity planning, and job scheduling. These telemetry streams require costly bandwidth utilization and storage space particularly at medium-long term for large data centers. Moreover, accurate future estimation of these telemetry streams is a challenging task due to multi-tenant co-hosted applications and dynamic workloads. The inaccurate estimation leads to either under or over-provisioning of data center resources. In this Ph.D. thesis, we propose to improve the prediction accuracy and reduce the bandwidth utilization and storage space requirement with the help of modeling and prediction methods from machine learning. Most of the existing methods are based on a single model which often does not appropriately estimate different workload scenarios. Moreover, these prediction methods use a fixed size of observation windows which cannot produce accurate results because these are not adaptively adjusted to capture the local trends in the recent data. Therefore, the estimation method trains on fixed sliding windows use an irrelevant large number of observations which yields inaccurate estimations. In summary, we C1) efficiently reduce bandwidth and storage for telemetry data through real-time modeling using Markov chain model. C2) propose a novel method to adaptively and automatically identify the most appropriate model to accurately estimate data center resources utilization. C3) propose a deep learning-based adaptive window size selection method which dynamically limits the sliding window size to capture the local trend in the latest resource utilization for building estimation model.Hoy en día, Cloud Computing se usa ampliamente para alojar y prestar servicios a través de Internet. La arquitectura de las nubes es compleja debido a su naturaleza heterogénea del hardware y está alojada en centros de datos a gran escala. Para administrar de manera efectiva y eficiente dicha infraestructura compleja, se necesita un monitoreo constante. Este monitoreo genera grandes cantidades de flujos de datos de telemetría (por ejemplo, métricas de utilización de hardware) que se utilizan para múltiples propósitos, incluyendo detección de problemas, gestión de recursos, caracterización de carga de trabajo, predicción de utilización de recursos, planificación de capacidad y programación de trabajos. Estas transmisiones de telemetría requieren una utilización costosa del ancho de banda y espacio de almacenamiento, particularmente a mediano y largo plazo para grandes centros de datos. Además, la estimación futura precisa de estas transmisiones de telemetría es una tarea difícil debido a las aplicaciones cohospedadas de múltiples inquilinos y las cargas de trabajo dinámicas. La estimación inexacta conduce a un suministro insuficiente o excesivo de los recursos del centro de datos. En este Ph.D. En la tesis, proponemos mejorar la precisión de la predicción y reducir la utilización del ancho de banda y los requisitos de espacio de almacenamiento con la ayuda de métodos de modelado y predicción del aprendizaje automático. La mayoría de los métodos existentes se basan en un modelo único que a menudo no estima adecuadamente diferentes escenarios de carga de trabajo. Además, estos métodos de predicción utilizan un tamaño fijo de ventanas de observación que no pueden producir resultados precisos porque no se ajustan adaptativamente para capturar las tendencias locales en los datos recientes. Por lo tanto, el método de estimación entrena en ventanas corredizas fijas utiliza un gran número de observaciones irrelevantes que produce estimaciones inexactas. En resumen, C1) reducimos eficientemente el ancho de banda y el almacenamiento de datos de telemetría a través del modelado en tiempo real utilizando el modelo de cadena de Markov. C2) proponer un método novedoso para identificar de forma adaptativa y automática el modelo más apropiado para estimar con precisión la utilización de los recursos del centro de datos. C3) proponer un método de selección de tamaño de ventana adaptativo basado en el aprendizaje profundo que limita dinámicamente el tamaño de ventana deslizante para capturar la tendencia local en la última utilización de recursos para el modelo de estimación de construcción.Postprint (published version
    • …
    corecore