9,952 research outputs found

    Online Algorithms for Geographical Load Balancing

    Get PDF
    It has recently been proposed that Internet energy costs, both monetary and environmental, can be reduced by exploiting temporal variations and shifting processing to data centers located in regions where energy currently has low cost. Lightly loaded data centers can then turn off surplus servers. This paper studies online algorithms for determining the number of servers to leave on in each data center, and then uses these algorithms to study the environmental potential of geographical load balancing (GLB). A commonly suggested algorithm for this setting is “receding horizon control” (RHC), which computes the provisioning for the current time by optimizing over a window of predicted future loads. We show that RHC performs well in a homogeneous setting, in which all servers can serve all jobs equally well; however, we also prove that differences in propagation delays, servers, and electricity prices can cause RHC perform badly, So, we introduce variants of RHC that are guaranteed to perform as well in the face of such heterogeneity. These algorithms are then used to study the feasibility of powering a continent-wide set of data centers mostly by renewable sources, and to understand what portfolio of renewable energy is most effective

    Steering the Smart Grid

    Get PDF
    Increasing energy prices and the greenhouse effect lead to more awareness of energy efficiency of electricity supply. During the last years, a lot of technologies and optimization methodologies were developed to increase the efficiency, maintain the grid stability and support large scale introduction of renewable sources. In previous work, we showed the effectiveness of our three-step methodology to reach these objectives, consisting of 1) offline prediction, 2) offline planning and 3) online scheduling in combination with MPC. In this paper we analyse the best structure for distributing the steering signals in the third step. Simulations show that pricing signals work as good as on/off signals, but pricing signals are more general. Individual pricing signals per house perform better with small prediction errors while one global steering signal for a group of houses performs better when the prediction errors are larger. The best hierarchical structure is to use consumption patterns on all levels except the lowest level and deduct the pricing signals in the lowest node of the tree
    corecore