11,330 research outputs found

    3D Geographical routing in wireless sensor networks

    Get PDF
    In this paper, we present a novel 3D geographical routing algorithm (3DGR) that makes use of the position information to route packets from sources to destinations with high path quality and reliability. The locality and high scalability of this algorithm make it suitable for wireless sensor networks. It provides high adaptability to changes in topology and recovery of link failures which increases its reliability. We also incorporate the battery-aware energy efficient schemes to increase the overall lifetime of the network. To reduce latency, a method of keeping a small record of recent paths is used. We also show that location errors still result in good performance of our algorithm while the same assumptions might yield to bad performance or even complete failures in others. Simulation results show that the power consumption and delay using 3DGR are close to optimal obtainable based on full knowledge of the network

    Power Aware Routing for Sensor Databases

    Full text link
    Wireless sensor networks offer the potential to span and monitor large geographical areas inexpensively. Sensor network databases like TinyDB are the dominant architectures to extract and manage data in such networks. Since sensors have significant power constraints (battery life), and high communication costs, design of energy efficient communication algorithms is of great importance. The data flow in a sensor database is very different from data flow in an ordinary network and poses novel challenges in designing efficient routing algorithms. In this work we explore the problem of energy efficient routing for various different types of database queries and show that in general, this problem is NP-complete. We give a constant factor approximation algorithm for one class of query, and for other queries give heuristic algorithms. We evaluate the efficiency of the proposed algorithms by simulation and demonstrate their near optimal performance for various network sizes

    Bibliometric Analysis of Firefly Algorithm Applications in the Field of Wireless Sensor Networks

    Get PDF
    Wireless Sensor Network is a network of wireless sensor nodes that are capable of sensing information from their surroundings and transmit the sensed information to data collection point known as a base station. Applications of wireless sensor networks are large in number and forest fire detection, landslide monitoring, etc. are few applications to note. The research challenges in wireless sensor networks is the transmission of data from the sensor node to the base station in an energy-efficient manner and network life prolongation. Cluster-based routing techniques are extensively adopted to address this research challenge. Researchers have used different metaheuristic and soft computing techniques for designing such energy-efficient routing techniques. In the literature, a lot of survey article on cluster-based routing methods are available, but there is no bibliometric analysis conducted so far. Hence in this research article, bibliometric study with the focus on the firefly algorithm and its applications in wireless sensor network is undertaken. The purpose of this article is to explore the nature of research conducted concerning to authors, the connection between keywords, the importance of journals and scope for further research in soft computing based clustered routing methods. A detailed bibliometric analysis is carried out by collecting the details of published articles from the Scopus database. In this article, the collected data is articulated in terms of yearly document statistics, key affiliations of authors, contributing geographical locations, subject area statistics, author-keyword mapping, and many more essential aspects of bibliometric analysis. The conducted study helped in understanding that there is a vast scope for the research community to perform research work concerning firefly algorithm applications in the field of wireless sensor networks

    Combined Coverage Area Reporting and Geographical Routing in Wireless Sensor-Actuator Networks for Cooperating with Unmanned Aerial Vehicles

    Get PDF
    In wireless sensor network (WSN) applications with multiple gateways, it is key to route location dependent subscriptions efficiently at two levels in the system. At the gateway level, data sinks must not waste the energy of the WSN by injecting subscriptions that are not relevant for the nodes in their coverage area and at WSN level, energy-efficient delivery of subscriptions to target areas is required. In this paper, we propose a mechanism in which (1) the WSN provides an accurate and up-to-date coverage area description to gateways and (2) the wireless sensor network re-uses the collected coverage area information to enable efficient geographical routing of location dependent subscriptions and other messages. The latter has a focus on routing of messages injected from sink nodes to nodes in the region of interest. Our proposed mechanisms are evaluated in simulation

    Design of Combined Coverage Area Reporting and Geo-casting of Queries for Wireless Sensor Networks

    Get PDF
    In order to efficiently deal with queries or other location dependent information, it is key that the wireless sensor network informs gateways what geographical area is serviced by which gateway. The gateways are then able to e.g. efficiently route queries which are only valid in particular regions of the deployment. The proposed algorithms combine coverage area reporting and geographical routing of queries which are injected by gateways.\u

    On Mobility Management in Multi-Sink Sensor Networks for Geocasting of Queries

    Get PDF
    In order to efficiently deal with location dependent messages in multi-sink wireless sensor networks (WSNs), it is key that the network informs sinks what geographical area is covered by which sink. The sinks are then able to efficiently route messages which are only valid in particular regions of the deployment. In our previous work (see the 5th and 6th cited documents), we proposed a combined coverage area reporting and geographical routing protocol for location dependent messages, for example, queries that are injected by sinks. In this paper, we study the case where we have static sinks and mobile sensor nodes in the network. To provide up-to-date coverage areas to sinks, we focus on handling node mobility in the network. We discuss what is a better method for updating the routing structure (i.e., routing trees and coverage areas) to handle mobility efficiently: periodic global updates initiated from sinks or local updates triggered by mobile sensors. Simulation results show that local updating perform very well in terms of query delivery ratio. Local updating has a better scalability to increasing network size. It is also more energy efficient than ourpreviously proposed approach, where global updating in networks have medium mobility rate and speed

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)
    corecore