1,087 research outputs found

    Restricted Covariance Priors with Applications in Spatial Statistics

    Get PDF
    We present a Bayesian model for area-level count data that uses Gaussian random effects with a novel type of G-Wishart prior on the inverse variance--covariance matrix. Specifically, we introduce a new distribution called the truncated G-Wishart distribution that has support over precision matrices that lead to positive associations between the random effects of neighboring regions while preserving conditional independence of non-neighboring regions. We describe Markov chain Monte Carlo sampling algorithms for the truncated G-Wishart prior in a disease mapping context and compare our results to Bayesian hierarchical models based on intrinsic autoregression priors. A simulation study illustrates that using the truncated G-Wishart prior improves over the intrinsic autoregressive priors when there are discontinuities in the disease risk surface. The new model is applied to an analysis of cancer incidence data in Washington State.Comment: Published at http://dx.doi.org/10.1214/14-BA927 in the Bayesian Analysis (http://projecteuclid.org/euclid.ba) by the International Society of Bayesian Analysis (http://bayesian.org/

    Bayesian Point Event Modeling in Spatial and Environmental Epidemiology: A Review

    Get PDF
    This paper reviews the current state of point event modeling in spatial epidemiology from a Bayesian perspective. Point event (or case event) data arise when geo-coded addresses of disease events are available. Often this level of spatial resolution would not be accessible due to medical confidentiality constraints. However, for the examination of small spatial scales it is important to be capable of examining point process data directly. Models for such data are usually formulated based on point process theory. In addition, special conditioning arguments can lead to simpler Bernoulli likelihoods and logistic spatial models. Goodness-of-fit diagnostics and Bayesian residuals are also considered. Applications within putative health hazard risk assessment, cluster detection, and linkage to environmental risk fields (misalignment) are considered

    Julian Ernst Besag, 26 March 1945 -- 6 August 2010, a biographical memoir

    Full text link
    Julian Besag was an outstanding statistical scientist, distinguished for his pioneering work on the statistical theory and analysis of spatial processes, especially conditional lattice systems. His work has been seminal in statistical developments over the last several decades ranging from image analysis to Markov chain Monte Carlo methods. He clarified the role of auto-logistic and auto-normal models as instances of Markov random fields and paved the way for their use in diverse applications. Later work included investigations into the efficacy of nearest neighbour models to accommodate spatial dependence in the analysis of data from agricultural field trials, image restoration from noisy data, and texture generation using lattice models.Comment: 26 pages, 14 figures; minor revisions, omission of full bibliograph

    Book of Abstracts XVIII Congreso de Biometría CEBMADRID

    Get PDF
    Abstracts of the XVIII Congreso de Biometría CEBMADRID held from 25 to 27 May in MadridInteractive modelling and prediction of patient evolution via multistate models / Leire Garmendia Bergés, Jordi Cortés Martínez and Guadalupe Gómez Melis : This research was funded by the Ministerio de Ciencia e Innovación (Spain) [PID2019104830RBI00]; and the Generalitat de Catalunya (Spain) [2017SGR622 and 2020PANDE00148].Operating characteristics of a model-based approach to incorporate non-concurrent controls in platform trials / Pavla Krotka, Martin Posch, Marta Bofill Roig : EU-PEARL (EU Patient-cEntric clinicAl tRial pLatforms) project has received funding from the Innovative Medicines Initiative (IMI) 2 Joint Undertaking (JU) under grant agreement No 853966. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and EFPIA and Children’s Tumor Foundation, Global Alliance for TB Drug Development non-profit organisation, Spring works Therapeutics Inc.Modeling COPD hospitalizations using variable domain functional regression / Pavel Hernández Amaro, María Durbán Reguera, María del Carmen Aguilera Morillo, Cristobal Esteban Gonzalez, Inma Arostegui : This work is supported by the grant ID2019-104901RB-I00 from the Spanish Ministry of Science, Innovation and Universities MCIN/AEI/10.13039/501100011033.Spatio-temporal quantile autoregression for detecting changes in daily temperature in northeastern Spain / Jorge Castillo-Mateo, Alan E. Gelfand, Jesús Asín, Ana C. Cebrián / Spatio-temporal quantile autoregression for detecting changes in daily temperature in northeastern Spain : This work was partially supported by the Ministerio de Ciencia e Innovación under Grant PID2020-116873GB-I00; Gobierno de Aragón under Research Group E46_20R: Modelos Estocásticos; and JC-M was supported by Gobierno de Aragón under Doctoral Scholarship ORDEN CUS/581/2020.Estimation of the area under the ROC curve with complex survey data / Amaia Iparragirre, Irantzu Barrio, Inmaculada Arostegui : This work was financially supported in part by IT1294-19, PID2020-115882RB-I00, KK-2020/00049. The work of AI was supported by PIF18/213.INLAMSM: Adjusting multivariate lattice models with R and INLA / Francisco Palmí Perales, Virgilio Gómez Rubio and Miguel Ángel Martínez Beneito : This work has been supported by grants PPIC-2014-001-P and SBPLY/17/180501/000491, funded by Consejería de Educación, Cultura y Deportes (Junta de Comunidades de Castilla-La Mancha, Spain) and FEDER, grant MTM2016-77501-P, funded by Ministerio de Economía y Competitividad (Spain), grant PID2019-106341GB-I00 from Ministerio de Ciencia e Innovación (Spain) and a grant to support research groups by the University of Castilla-La Mancha (Spain). F. Palmí-Perales has been supported by a Ph.D. scholarship awarded by the University of Castilla-La Mancha (Spain)

    FedPNN: One-shot Federated Classification via Evolving Clustering Method and Probabilistic Neural Network hybrid

    Full text link
    Protecting data privacy is paramount in the fields such as finance, banking, and healthcare. Federated Learning (FL) has attracted widespread attention due to its decentralized, distributed training and the ability to protect the privacy while obtaining a global shared model. However, FL presents challenges such as communication overhead, and limited resource capability. This motivated us to propose a two-stage federated learning approach toward the objective of privacy protection, which is a first-of-its-kind study as follows: (i) During the first stage, the synthetic dataset is generated by employing two different distributions as noise to the vanilla conditional tabular generative adversarial neural network (CTGAN) resulting in modified CTGAN, and (ii) In the second stage, the Federated Probabilistic Neural Network (FedPNN) is developed and employed for building globally shared classification model. We also employed synthetic dataset metrics to check the quality of the generated synthetic dataset. Further, we proposed a meta-clustering algorithm whereby the cluster centers obtained from the clients are clustered at the server for training the global model. Despite PNN being a one-pass learning classifier, its complexity depends on the training data size. Therefore, we employed a modified evolving clustering method (ECM), another one-pass algorithm to cluster the training data thereby increasing the speed further. Moreover, we conducted sensitivity analysis by varying Dthr, a hyperparameter of ECM at the server and client, one at a time. The effectiveness of our approach is validated on four finance and medical datasets.Comment: 27 pages, 13 figures, 7 table

    Modelling HIV/AIDS epidemic in Nigeria

    Get PDF
    Nigeria is one of the countries most affected by the HIV/AIDS pandemic, third only to India and South Africa. With about 10% of the global HIV/AIDS cases estimated to be in the country, the public health and socio-economic implications are enormous. This thesis has two broad aims: the first is to develop statistical models which adequately describe the spatial distribution of the Nigerian HIV/AIDS epidemic and its associated ecological risk factors; the second, to develop models that could reconstruct the HIV incidence curve, obtain an estimate of the hidden HIV/AIDS population and a short term projection for AIDS incidence and a measure of precision of the estimates. To achieve these objectives, we first examined data from various sources and selected three sets of data based on national coverage and minimal reporting delay. The data sets are the outcome of the National HIV/AIDS Sentinel Surveillance Survey conducted in 1999, 2001, 2003 and 2005 by the Federal Ministry of Health; the outcome of the survey of 1057 health and laboratory facilities conducted by the Nigerian Institute of Medical Research in 2000; and case by case HIV screening data collected from an HIV/AIDS centre of excellence. A thorough review of methods used by WHO/UNAIDS to produce estimates of the Nigerian HIV/AIDS scenario was carried out. The Estimation and Projection Package (EPP) currently being used for modelling the epidemic partitions the population into at-risk, not-at-risk and infected sub-populations. It also requires some parameter input representing the force of infection and behaviour or high risk adjustment parameter. It may be difficult to precisely ascertain the size of these population groups and parameters in countries as large and diverse as Nigeria. Also, the accuracy of vital rates used in the EPP and Spectrum program is doubtful. Literature on ordinary back-calculation, nonparametric back-calculation, and modified back-calculation methods was reviewed in detail. Also, an indepth review of disease mapping techniques including multilevel models and geostatistical methods was conducted. The existence of spatial clusters was investigated using cluster analysis and some measure of spatial autocorrelation (Moran I and Geary c coefficients, semivariogram and kriging) applied to the National HIV/AIDS Surveillance data. Results revealed the existence of spatial clusters with significant positive spatial autocorrelation coefficients that tended to get stronger as the epidemic developed through time. GAM and local regression fit on the data revealed spatial trends on the north-south and east - west axis. Analysis of hierarchical, spatial and ecological factor effects on the geographical variation of HIV prevalence using variance component and spatial multilevel models was performed using restricted maximum likelihood implemented in R and empirical and full Bayesian methods in WinBUGS. Results confirmed significant spatial effects and some ecological factors were significant in explaining the variation. Also, variation due to various levels of aggregation was prominent. Estimates of cumulative HIV infection in Nigeria were obtained from both parametric and nonparametric back-calculation methods. Step and spline functions were assumed for the HIV infection curve in the parametric case. Parameter estimates obtained using 3-step and 4-step models were similar but the standard errors of these parameters were higher in the 4-step model. Estimates obtained using linear, quadratic, cubic and natural splines differed and also depended on the number and positions of the knots. Cumulative HIV infection estimates obtained using the step function models were comparable with those obtained using nonparametric back-calculation methods. Estimates from nonparametric back-calculation were obtained using the EMS algorithm. The modified nonparametric back-calculation method makes use of HIV data instead of the AIDS incidence data that are used in parametric and ordinary nonparametric back-calculation methods. In this approach, the hazard of undergoing HIV test is different for routine and symptom-related tests. The constant hazard of routine testing and the proportionality coefficient of symptom-related tests were estimated from the data and incorporated into the HIV induction distribution function. Estimates of HIV prevalence differ widely (about three times higher) from those obtained using parametric and ordinary nonparametric back-calculation methods. Nonparametric bootstrap procedure was used to obtain point-wise confidence interval and the uncertainty in estimating or predicting precisely the most recent incidence of AIDS or HIV infection was noticeable in the models but greater when AIDS data was used in the back-projection model. Analysis of case by case HIV screening data indicate that of 33349 patients who attended the HIV laboratory of a centre of excellence for the treatment of HIV/AIDS between October 2000 and August 2006, 7646 (23%) were HIV positive with females constituting about 61% of the positive cases. The bulk of infection was found in patients aged 15-49 years, about 86 percent of infected females and 78 percent of males were in this age group. Attendance at the laboratory and the proportion of HIV positive tests witnessed a remarkable increase when screening became free of charge. Logistic regression analysis indicated a 3-way interaction between time period, age and sex. Removing the effect of time by stratifying by time period left 2-way interactions between age and sex. A Correction factor for underreporting was ascertained by studying attendance at the laboratory facility over two time periods defined by the cost of HIV screening. Estimates of HIV prevalence obtained from corrected data using the modified nonparametric back-calculation are comparable with UN estimates obtained by a different method. The Nigerian HIV/AIDS pandemic is made up of multiple epidemics spatially located in different parts of the country with most of them having the potential of being sustained into the future given information on some risk factors. It is hoped that the findings of this research will be a ready tool in the hands of policy makers in the formulation of policy and design of programs to combat the epidemic in the country. Access to data on HIV/AIDS are highly restricted in the country and this hampers more in-depth modelling of the epidemic. Subject to data availability, we recommend that further work be done on the construction of stratification models based on sex, age and the geopolitical zones in order to estimate the infection intensity in each of the population groups. Uncertainties surrounding assumptions of infection intensity and incubation distribution can be minimized using Bayesian methods in back-projection
    corecore