74 research outputs found

    DVB-S2x Enabled Precoding for High Throughput Satellite Systems

    Get PDF
    Multi-user Multiple-Input Multiple-Output (MU-MIMO) has allowed recent releases of terrestrial LTE standards to achieve significant improvements in terms of offered system capacity. The publications of the DVB-S2x standard and particularly of its novel superframe structure is a key enabler for applying similar interference management techniques -such as precoding- to multibeam High Throughput Satellite (HTS) systems. This paper presents results resulting from European Space Agency (ESA) funded R&D activities concerning the practical issues that arise when precoding is applied over an aggressive frequency re-use HTS network. In addressing these issues, the paper also proposes pragmatic solutions that have been developed in order to overcome these limitations. Through the application of a comprehensive system simulator, it is demonstrated that important capacity gains (beyond 40%) are to be expected from applying precoding even after introducing a number of significant practical impairments

    Non-orthogonal transmission techniques for multibeam satellite systems

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Non-orthogonal transmission is a promising technology enabler to meet the requirements of 5G communication systems. Seminal papers demonstrated that non-orthogonal multiplexing techniques outperform orthogonal schemes in terms of capacity, latency, and user fairness. Since it is envisioned that satellites will be an integral component of the 5G infrastructure, it is worth studying how satellite communication systems can benefit from the application of non-orthogonal transmission schemes as well. Contrary to common perception, current communications through a satellite present a different architecture and face different impairments than those in the wireless terrestrial links. In particular, this work aims to describe different non-orthogonal schemes that are suitable for the forward link (i.e., satellite to user). In contrast with the return link of the satellite (i.e., user to satellite), where the use of non-orthogonal transmission schemes has been widely studied, less effort has been devoted to the forward link. In light of this, this article provides an overview and a novel taxonomy that is based on the forward link of different non-orthogonal multibeam transmission schemes. Finally, guidelines that open new avenues for research in this topic are provided.Peer ReviewedPostprint (author's final draft

    Interference-aware Demand-based User Scheduling in Precoded High Throughput Satellite Systems

    Get PDF
    In recent years, dynamic traffic demand requisites have driven the satellite communication service providers to implement reconfigurable demand-driven features to align the delivered throughput with the temporal and geographical variations of the traffic demand. Also, in current interference-limited High Throughput Satellite (HTS) systems, the resulting inter-beam co-channel interference can be mitigated by carefully performing precoding and user scheduling. Unfortunately, the conventional user scheduling algorithms fail to provide demand satisfaction for dynamic traffic demand requisites. Hence, in this paper, we focus on the user scheduling design for precoded satellite systems where both co-channel interference and user demands are taken into account. In particular, we first classify the sectors in each beam according to the interference they may cause to neighboring beams. Next, we formulate the scheduling problem such as the activation of neighboring beam sectors is avoided while proportionally dwelling on the sectors based on their traffic demands. The supporting numerical results for different demand distribution profiles validate the effectiveness of proposed interference-aware demand-based user scheduling over conventional scheduling techniques

    Evolution of High Throughput Satellite Systems: Vision, Requirements, and Key Technologies

    Full text link
    High throughput satellites (HTS), with their digital payload technology, are expected to play a key role as enablers of the upcoming 6G networks. HTS are mainly designed to provide higher data rates and capacities. Fueled by technological advancements including beamforming, advanced modulation techniques, reconfigurable phased array technologies, and electronically steerable antennas, HTS have emerged as a fundamental component for future network generation. This paper offers a comprehensive state-of-the-art of HTS systems, with a focus on standardization, patents, channel multiple access techniques, routing, load balancing, and the role of software-defined networking (SDN). In addition, we provide a vision for next-satellite systems that we named as extremely-HTS (EHTS) toward autonomous satellites supported by the main requirements and key technologies expected for these systems. The EHTS system will be designed such that it maximizes spectrum reuse and data rates, and flexibly steers the capacity to satisfy user demand. We introduce a novel architecture for future regenerative payloads while summarizing the challenges imposed by this architecture

    Improved Graph-Based User Scheduling For Sum-Rate Maximization in LEO-NTN Systems

    Get PDF
    In this paper, we study the problem of user scheduling for Low Earth Orbit (LEO) Multi-User (MU) Multiple-Input-Multiple-Output (MIMO) Non-Terrestrial Network (NTN) systems with the objective of maximizing the sum-rate capacity while minimizing the total number of clusters. We propose an iterative graph-based maximum clique scheduling approach with constant graph density. Users are grouped together based on the channel coefficient of correlation (CoC) as dissimilarity metric and served by the satellite via Space Division Multiple Access (SDMA) by means of Minimum Mean Square Error (MMSE) digital beamforming on a cluster basis. Clusters are then served in different time slots via Time Division Multiple Access (TDMA). The results, presented in terms of per-cluster sum-rate capacity and per-user throughput, show that the presented approach can significantly improve the system performance
    corecore