39 research outputs found

    Geographic routing in duty-cycled industrial wireless sensor networks with radio irregularity

    Get PDF
    Industrial wireless sensor networks (IWSNs) are required to provide highly reliable and real-time transmission. Moreover, for connected K-neighborhood (CKN) sleep scheduling-based duty-cycled IWSNs in which the network lifetime of IWSNs can be prolonged, the two-phase geographic greedy forwarding (TPGF) geographic routing algorithm has attracted attention due to its unique transmission features: multi path, shortest path, and hole bypassing. However, the performance of TPGF in CKN-based duty-cycled IWSNs with radio irregularity is not well investigated in the literature. In this paper, we first evaluate the impact of radio irregularity on CKN-based duty-cycled IWSNs. Furthermore, we investigate the routing performance of TPGF in CKN-based duty-cycled IWSNs with radio irregularity, in terms of the number of explored routing paths as well as the lengths of the average and shortest routing paths. Particularly, we establish the upper bound on the number of explored routing paths. The upper bound is slightly relaxed with radio irregularity compared with without radio irregularity; however, it is bounded by the number of average 1-hop neighbors in always-on IWSNs. With extensive simulations, we observe that the cross-layer optimized version of TPGF (i.e., TPFGPlus) finds reliable transmission paths with low end-to-end delay, even in CKN-based duty-cycled IWSNs with radio irregularity

    Surveillance of sensitive fenced areas using duty-cycled wireless sensor networks with asymmetrical links

    Get PDF
    © 2018 Elsevier Ltd. This paper presents a cross-layer communication protocol for Wireless Sensor Network (WSN) enabled surveillance system for sensitive fenced areas, e.g., nuclear/oil site. Initially, the proposed protocol identifies the boundary nodes of the deployed WSN to be used as sentinel nodes, i.e., nodes that are always in active state. The remaining nodes are used as duty-cycled relay nodes during the data communication phase. The boundary nodes identification process and data routing are both performed using an enhanced version of the Greedy Perimeter Stateless Routing (GPSR) protocol, which relies on a Non Unit Disk Graph (N-UDG) and referred to as GPSR over Symmetrical Links (GPSR-SL). Both greedy and perimeter modes of GPSR-SL forward data through symmetrical links only. Moreover, we apply the Mutual Witness (MW) fix to the Gabriel Graph (GG) planarization, to enable a correct perimeter routing on a N-UDG. Simulation results show that the proposed protocol achieves higher packet delive ry ratio by up to 3.63%, energy efficiency and satisfactory latency when compared to the same protocol based on the original GPSR

    Energy-efficient MAC protocol for wireless sensor networks

    Get PDF
    A Wireless Sensor Network (WSN) is a collection of tiny devices called sensor nodes which are deployed in an area to be monitored. Each node has one or more sensors with which they can measure the characteristics of their surroundings. In a typical WSN, the data gathered by each node is sent wirelessly through the network from one node to the next towards a central base station. Each node typically has a very limited energy supply. Therefore, in order for WSNs to have acceptable lifetimes, energy efficiency is a design goal that is of utmost importance and must be kept in mind at all levels of a WSN system. The main consumer of energy on a node is the wireless transceiver and therefore, the communications that occur between nodes should be carefully controlled so as not to waste energy. The Medium Access Control (MAC) protocol is directly in charge of managing the transceiver of a node. It determines when the transceiver is on/off and synchronizes the data exchanges among neighbouring nodes so as to prevent collisions etc., enabling useful communications to occur. The MAC protocol thus has a big impact on the overall energy efficiency of a node. Many WSN MAC protocols have been proposed in the literature but it was found that most were not optimized for the group of WSNs displaying very low volumes of traffic in the network. In low traffic WSNs, a major problem faced in the communications process is clock drift, which causes nodes to become unsynchronized. The MAC protocol must overcome this and other problems while expending as little energy as possible. Many useful WSN applications show low traffic characteristics and thus a new MAC protocol was developed which is aimed at this category of WSNs. The new protocol, Dynamic Preamble Sampling MAC (DPS-MAC) builds on the family of preamble sampling protocols which were found to be most suitable for low traffic WSNs. In contrast to the most energy efficient existing preamble sampling protocols, DPS-MAC does not cater for the worst case clock drift that can occur between two nodes. Rather, it dynamically learns the actual clock drift experienced between any two nodes and then adjusts its operation accordingly. By simulation it was shown that DPS-MAC requires less protocol overhead during the communication process and thus performs more energy efficiently than its predecessors under various network operating conditions. Furthermore, DPS-MAC is less prone to become overloaded or unstable in conditions of high traffic load and high contention levels respectively. These improvements cause the use of DPS-MAC to lead to longer node and network lifetimes, thus making low traffic WSNs more feasible.Dissertation (MEng)--University of Pretoria, 2008.Electrical, Electronic and Computer EngineeringMEngUnrestricte

    7. GI/ITG KuVS Fachgespräch Drahtlose Sensornetze

    Get PDF
    In dem vorliegenden Tagungsband sind die Beiträge des Fachgesprächs Drahtlose Sensornetze 2008 zusammengefasst. Ziel dieses Fachgesprächs ist es, Wissenschaftlerinnen und Wissenschaftler aus diesem Gebiet die Möglichkeit zu einem informellen Austausch zu geben – wobei immer auch Teilnehmer aus der Industrieforschung willkommen sind, die auch in diesem Jahr wieder teilnehmen.Das Fachgespräch ist eine betont informelle Veranstaltung der GI/ITG-Fachgruppe „Kommunikation und Verteilte Systeme“ (www.kuvs.de). Es ist ausdrücklich keine weitere Konferenz mit ihrem großen Overhead und der Anforderung, fertige und möglichst „wasserdichte“ Ergebnisse zu präsentieren, sondern es dient auch ganz explizit dazu, mit Neueinsteigern auf der Suche nach ihrem Thema zu diskutieren und herauszufinden, wo die Herausforderungen an die zukünftige Forschung überhaupt liegen.Das Fachgespräch Drahtlose Sensornetze 2008 findet in Berlin statt, in den Räumen der Freien Universität Berlin, aber in Kooperation mit der ScatterWeb GmbH. Auch dies ein Novum, es zeigt, dass das Fachgespräch doch deutlich mehr als nur ein nettes Beisammensein unter einem Motto ist.Für die Organisation des Rahmens und der Abendveranstaltung gebührt Dank den beiden Mitgliedern im Organisationskomitee, Kirsten Terfloth und Georg Wittenburg, aber auch Stefanie Bahe, welche die redaktionelle Betreuung des Tagungsbands übernommen hat, vielen anderen Mitgliedern der AG Technische Informatik der FU Berlin und natürlich auch ihrem Leiter, Prof. Jochen Schiller

    Modular Energy Efficient Protocols for Lower Layers of Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) emerged as one of the compelling research areas in recent years. It has produced promising solutions for several potential applications such as intrusion detection, target detection, industrial automation, environmental monitoring, surveillance and military systems, medical diagnosing systems, tactical systems, etc. WSNs consist of small size of sensor nodes that are disseminated in a targeted area to monitor the events for collecting the data of interest. Meanwhile, WSNs face many challenging problems such as high energy consumption, network scalability and mobility. These problems profoundly affect the lifetime of the network, limit the access to several WSN application areas, and the Quality of Service (QoS) provision parameters including throughput, latency, bandwidth, data buffering, resource constraints, data redundancy, and medium reliability. Although, there has been significant research conducted in WSNs over the last few years to maintain a high standard of communication, especially coverage, challenges of high power consumption, mobility and scalability to name a few. The major problem with WSNs at the low layers are the excessive energy consumption by the sensor’s transceiver. Other related challenges are mobility and scalability that limit the QoS provision. To handle these issues, novel modular energy efficient protocols are proposed for lower layers of WSNs. These modular based protocols improve the energy consumption, providing cross-layering support to handle mobility, scalability and data redundancy. In addition, there is a protocol that automates handling the idle listening process. Other protocols optimize data frame format for faster channel access, data frame transfer, managing acknowledgement time and retry transmission, check the capability of sensing the nature of environment to decide to use either active or passive mode that help save energy, determine shortest efficient path, packet generation rate, automatic active and sleep mode, smart queuing, data aggregation and dynamically selection of the cluster head node. All these features ensure the QoS provision and resolve many problems introduced by mobility and scalability for multiple application areas especially disaster recovery, hospital monitoring system, remotely handling the static and mobile objects and battlefield surveillance systems. Finally, modular energy efficient protocols are simulated, and results demonstrate the validity and compatibility of the proposed approaches for multiple WSNs application areas

    A Fog Computing Architecture for Disaster Response Networks

    Get PDF
    In the aftermath of a disaster, the impacted communication infrastructure is unable to provide first responders with a reliable medium of communication. Delay tolerant networks that leverage mobility in the area have been proposed as a scalable solution that can be deployed quickly. Such disaster response networks (DRNs) typically have limited capacity due to frequent disconnections in the network, and under-perform when saturated with data. On the other hand, there is a large amount of data being produced and consumed due to the recent popularity of smartphones and the cloud computing paradigm. Fog Computing brings the cloud computing paradigm to the complex environments that DRNs operate in. The proposed architecture addresses the key challenges of ensuring high situational awareness and energy efficiency when such DRNs are saturated with large amounts of data. Situational awareness is increased by providing data reliably, and at a high temporal and spatial resolution. A waypoint placement algorithm places hardware in the disaster struck area such that the aggregate good-put is maximized. The Raven routing framework allows for risk-averse data delivery by allowing the user to control the variance of the packet delivery delay. The Pareto frontier between performance and energy consumption is discovered, and the DRN is made to operate at these Pareto optimal points. The FuzLoc distributed protocol enables mobile self-localization in indoor environments. The architecture has been evaluated in realistic scenarios involving deployments of multiple vehicles and devices

    Wireless Sensor Networks

    Get PDF
    The aim of this book is to present few important issues of WSNs, from the application, design and technology points of view. The book highlights power efficient design issues related to wireless sensor networks, the existing WSN applications, and discusses the research efforts being undertaken in this field which put the reader in good pace to be able to understand more advanced research and make a contribution in this field for themselves. It is believed that this book serves as a comprehensive reference for graduate and undergraduate senior students who seek to learn latest development in wireless sensor networks

    Routing for Wireless Sensor Networks: From Collection to Event-Triggered Applications

    Get PDF
    Wireless Sensor Networks (WSNs) are collections of sensing devices using wireless communication to exchange data. In the past decades, steep advancements in the areas of microelectronics and communication systems have driven an explosive growth in the deployment of WSNs. Novel WSN applications have penetrated multiple areas, from monitoring the structural stability of historic buildings, to tracking animals in order to understand their behavior, or monitoring humans' health. The need to convey data from increasingly complex applications in a reliable and cost-effective manner translates into stringent performance requirements for the underlying WSNs. In the frame of this thesis, we have focused on developing routing protocols for multi-hop WSNs, that significantly improve their reliability, energy consumption and latency. Acknowledging the need for application-specific trade-offs, we have split our contribution into two parts. Part 1 focuses on collection protocols, catering to applications with high reliability and energy efficiency constraints, while the protocols developed in part 2 are subject to an additional bounded latency constraint. The two mechanisms introduced in the first part, WiseNE and Rep, enable the use of composite metrics, and thus significantly improve the link estimation accuracy and transmission reliability, at an energy expense far lower than the one achieved in previous proposals. The novel beaconing scheme WiseNE enables the energy-efficient addition of the RSSI (Received Signal Strength Indication) and LQI (Link Quality Indication) metrics to the link quality estimate by decoupling the sampling and exploration periods of each mote. This decoupling allows the use of the Trickle Algorithm, a key driver of protocols' energy efficiency, in conjunction with composite metrics. WiseNE has been applied to the Triangle Metric and validated in an online deployment. The section continues by introducing Rep, a novel sampling mechanism that leverages the packet repetitions already present in low-power preamble-sampling MAC protocols in order to improve the WSN energy consumption by one order of magnitude. WiseNE, Rep and the novel PRSSI (Penalized RSSI, a combination of PRR and RSSI) composite metric have been validated in a real smart city deployment. Part 2 introduces two mechanisms that were developed in the frame of the WiseSkin project (an initiative aimed at designing highly sensitive artificial skin for human limb prostheses), and are generally applicable to the domain of cyber-physical systems. It starts with Glossy-W, a protocol that leverages the superior energy-latency trade-off of flooding schemes based on concurrent transmissions. Glossy-W ensures the stringent synchronization requirements necessary for robust flooding, irrespective of the number of motes simultaneously reporting an event. Part 2 also introduces SCS (Synchronized Channel Sampling), a novel mechanism capable of reducing the power required for periodic polling, while maintaining the event detection reliability, and enhancing the network coexistence. The testbed experiments performed show that SCS manages to reduce the energy consumption of the state-of-the-art protocol Back-to-Back Robust Flooding by over one third, while maintaining an equivalent reliability, and remaining compatible with simultaneous event detection. SCS' benefits can be extended to the entire family of state-of-the-art protocols relying on concurrent transmissions

    Ultra Low Power Communication Protocols for UWB Impulse Radio Wireless Sensor Networks

    Get PDF
    This thesis evaluates the potential of Ultra Wideband Impulse Radio for wireless sensor network applications. Wireless sensor networks are collections of small electronic devices composed of one or more sensors to acquire information on their environment, an energy source (typically a battery), a microcontroller to control the measurements, process the information and communicate with its peers, and a radio transceiver to enable these communications. They are used to regularly collect information within their deployment area, often for very long periods of time (up to several years). The large number of devices often considered, as well as the long deployment durations, makes any manual intervention complex and costly. Therefore, these networks must self-configure, and automatically adapt to changes in their electromagnetic environment (channel variations, interferers) and network topology modifications: some nodes may run out of energy, or suffer from a hardware failure. Ultra Wideband Impulse Radio is a novel wireless technology that, thanks to its extremely large bandwidth, is more robust to frequency dependent propagation effects. Its impulsional nature makes it robust to multipath fading, as the short duration of the pulses leads most multipath components to arrive isolated. This technology should also enable high precision ranging through time of flight measurements, and operate at ultra low power levels. The main challenge is to design a system that reaches the same or higher degree of energy savings as existing narrowband systems considering all the protocol layers. As these radios are not yet widely available, the first part of this thesis presents Maximum Pulse Amplitude Estimation, a novel approach to symbol-level modeling of UWB-IR systems that enabled us to implement the first network simulator of devices compatible with the UWB physical layer of the IEEE 802.15.4A standard for wireless sensor networks. In the second part of this thesis, WideMac, a novel ultra low power MAC protocol specifically designed for UWB-IR devices is presented. It uses asynchronous duty cycling of the radio transceiver to minimize the power consumption, combined with periodic beacon emissions so that devices can learn each other's wake-up patterns and exchange packets. After an analytical study of the protocol, the network simulation tool presented in the first part of the thesis is used to evaluate the performance of WideMac in a medical body area network application. It is compared to two narrowband and an FM-UWB solutions. The protocol stack parameters are optimized for each solution, and it is observed that WideMac combined to UWB-IR is a credible technology for such applications. Similar simulations, considering this time a static multi-hop network are performed. It is found that WideMac and UWB-IR perform as well as a mature and highly optimized narrowband solution (based on the WiseMAC ULP MAC protocol), despite the lack of clear channel assessment functionality on the UWB radio. The last part of this thesis studies analytically a dual mode MAC protocol named WideMac-High Availability. It combines the Ultra Low PowerWideMac with the higher performance Aloha protocol, so that ultra low power consumption and hence long deployment times can be combined with high performance low latency communications when required by the application. The potential of this scheme is quantified, and it is proposed to adapt it to narrowband radio transceivers by combining WiseMAC and CSMA under the name WiseMAC-HA
    corecore