4 research outputs found

    Future Internet Routing Design for Massive Failures and Attacks

    Get PDF
    Given the high complexity and increasing traffic load of the Internet, geo-correlated challenges caused by large-scale disasters or malicious attacks pose a significant threat to dependable network communications. To understand its characteristics, we propose a critical-region identification mechanism and incorporate its result into a new graph resilience metric, compensated Total Geographical Graph Diversity. Our metric is capable of characterizing and differentiating resiliency levels for different physical topologies. We further analyze the mechanisms attackers could exploit to maximize the damage and demonstrate the effectiveness of a network restoration plan. Based on the geodiversity in topologies, we present the path geodiverse problem and two heuristics to solve it more efficiently compared to the optimal algorithm. We propose the flow geodiverse problem and two optimization formulations to study the tradeoff among cost, end-to-end delay, and path skew with multipath forwarding. We further integrate the solution to above models into our cross-layer resilient protocol stack, ResTP–GeoDivRP. Our protocol stack is prototyped and implemented in the network simulator ns-3 and emulated in our KanREN testbed. By providing multiple GeoPaths, our protocol stack provides better path restoration performance than Multipath TCP

    ResTP: A Configurable and Adaptable Multipath Transport Protocol for Future Internet Resilience

    Get PDF
    Motivated by the shortcomings of common transport protocols, e.g., TCP, UDP, and MPTCP, in modern networking and the belief that a general-purpose transport-layer protocol, which can operate efficiently over diverse network environments while being able to provide desired services for various application types, we design a new transport protocol, ResTP. The rapid advancement of networking technology and use paradigms is continually supporting new applications. The configurable and adaptable multipath-capable ResTP is not only distinct from the standard protocols by its flexibility in satisfying the requirements of different traffic classes considering the characteristics of the underlying networks, but by its emphasis on providing resilience. Resilience is an essential property that is unfortunately missing in the current Internet. In this dissertation, we present the design of ResTP, including the services that it supports and the set of algorithms that implement each service. We also discuss our modular implementation of ResTP in the open-source network simulator ns-3. Finally, the protocol is simulated under various network scenarios, and the results are analyzed in comparison with conventional protocols such as TCP, UDP, and MPTCP to demonstrate that ResTP is a promising new transport-layer protocol providing resilience in the Future Internet (FI)

    Geodiverse Routing Protocol with multipath forwarding compared to MPTCP

    No full text
    corecore