209 research outputs found

    Estimation of tortuosity and reconstruction of geodesic paths in 3D

    No full text
    This work is licensed under a Creative Commons Attribution-NonCommercial License. Full text also available at http://www.ias-iss.org/ojs/IAS/article/view/941/870International audienceThe morphological tortuosity of a geodesic path in a medium can be defined as the ratio between its geodesic length and the Euclidean distance between its two extremities. Thus, the minimum tortuosity of all the geodesic paths into a medium in 2D or in 3D can be estimated by image processing methods using mathematical morphology. Considering a medium, the morphological tortuosities of its internal paths are estimated according to one direction, which is perpendicular to both starting and ending opposite extremities of the geodesic paths. The used algorithm estimates the morphological tortuosities from geodesic distance maps, which are obtained from geodesic propagations. The shape of the propagated structuring element used to estimate the geodesic distance maps on a discrete grid has a direct influence on the morphological tortuosity and has to be chosen very carefully. The results of our algorithm is an image with pixels p having a value equal to the length of the shortest path containing p and connected to two considered opposite boundaries A and B of the image. The analysis of the histogram of the morphological tortuosities gives access to their statistical distribution. Moreover, for each tortuosity the paths can be extracted from the original image, which highlights the location of them into the sample. However, these geodesic paths have to be reconstructed for further processing. The extraction, because applying a threshold on the tortuosities, results in disconnected components, especially for highly tortuous paths. This reconstruction consists in reconnecting these components to the geodesic path linking the two opposite faces, by means of a backtracking algorithm

    Inf-structuring Functions: A Unifying Theory of Connections and Connected Operators

    Get PDF
    International audienceDuring the last decade, several theories have been proposed in order to extend the notion of set connections in mathematical morphology. These new theories were obtained by generalizing the definition to wider spaces (namely complete lattices) and/or by relaxing some hypothesis. Nevertheless, the links among those different theories are not always well understood, and this work aims at defining a unifying theoretical framework. The adopted approach relies on the notion of inf-structuring function which is simply a mapping that associates a set of sub-elements to each element of the space. The developed theory focuses on the properties of the decompositions given by an inf-structuring function rather than in trying to characterize the properties of the set of connected elements as a whole. We establish several sets of inf-structuring function properties that enable to recover the existing notions of connections, hyperconnections, and attribute space connections. Moreover, we also study the case of grey-scale connected operators that are obtained by stacking set connected operators and we show that they can be obtained using specific inf-structuring functions. This work allows us to better understand the existing theories, it facilitates the reuse of existing results among the different theories and it gives a better view on the unexplored areas of the connection theories

    Flashlight Search Medial Axis: A Pixel-Free Pore-Network Extraction Algorithm

    Full text link
    Pore-network models (PNMs) have become an important tool in the study of fluid flow in porous media over the last few decades, and the accuracy of their results highly depends on the extraction of pore networks. Traditional methods of pore-network extraction are based on pixels and require images with high quality. Here, a pixel-free method called the flashlight search medial axis (FSMA) algorithm is proposed for pore-network extraction in a continuous space. The search domain in a two-dimensional space is a line, whereas a surface domain is searched in a three-dimensional scenario. Thus, the FSMA algorithm follows the dimensionality reduction idea; the medial axis can be identified using only a few points instead of calculating every point in the void space. In this way, computational complexity of this method is greatly reduced compared to that of traditional pixel-based extraction methods, thus enabling large-scale pore-network extraction. Based on cases featuring two- and three-dimensional porous media, the FSMA algorithm performs well regardless of the topological structure of the pore network or the positions of the pore and throat centers. This algorithm can also be used to examine both closed- and open-boundary cases. Finally, the FSMA algorithm can search dead-end pores, which is of great significance in the study of multiphase flow in porous media

    Morphological bilateral filtering

    No full text
    International audienceA current challenging topic in mathematical morphology is the construction of locally adaptive operators; i.e., structuring functions that are dependent on the input image itself at each position. Development of spatially-variant filtering is well established in the theory and practice of Gaussian filtering. The aim of the first part of the paper is to study how to generalize these convolution-based approaches in order to introduce adaptive nonlinear filters that asymptotically correspond to spatially-variant morphological dilation and erosion. In particular, starting from the bilateral filtering framework and using the notion of counter-harmonic mean, our goal is to propose a new low complexity approach to define spatially-variant bilateral structuring functions. Then, in the second part of the paper, an original formulation of spatially-variant flat morphological filters is proposed, where the adaptive structuring elements are obtained by thresholding the bilateral structuring functions. The methodological results of the paper are illustrated with various comparative examples

    Metasurface Holographic Optical Traps for Ultracold Atoms

    Full text link
    We propose metasurface holograms as a novel platform to generate optical trap arrays for cold atoms with high fidelity, efficiency, and thermal stability. We developed design and fabrication methodologies to create dielectric, phase-only metasurface holograms based on titanium dioxide. We experimentally demonstrated optical trap arrays of various geometries, including periodic and aperiodic configurations with dimensions ranging from 1D to 3D and the number of trap sites up to a few hundred. We characterized the performance of the holographic metasurfaces in terms of the positioning accuracy, size and intensity uniformity of the generated traps, and power handling capability of the dielectric metasurfaces. Our proposed platform has great potential for enabling fundamental studies of quantum many-body physics, and quantum simulation and computation tasks. The compact form factor, passive nature, good power handling capability, and scalability of generating high-quality, large-scale arrays also make the metasurface platform uniquely suitable for realizing field-deployable devices and systems based on cold atoms

    Water Resources Management and Modeling

    Get PDF
    Hydrology is the science that deals with the processes governing the depletion and replenishment of water resources of the earth's land areas. The purpose of this book is to put together recent developments on hydrology and water resources engineering. First section covers surface water modeling and second section deals with groundwater modeling. The aim of this book is to focus attention on the management of surface water and groundwater resources. Meeting the challenges and the impact of climate change on water resources is also discussed in the book. Most chapters give insights into the interpretation of field information, development of models, the use of computational models based on analytical and numerical techniques, assessment of model performance and the use of these models for predictive purposes. It is written for the practicing professionals and students, mathematical modelers, hydrogeologists and water resources specialists
    • …
    corecore