573 research outputs found

    Geodesic regression of image and shape data for improved modeling of 4D trajectories

    Get PDF
    pre-printA variety of regression schemes have been proposed on images or shapes, although available methods do not handle them jointly. In this paper, we present a framework for joint image and shape regression which incorporates images as well as anatomical shape information in a consistent manner. Evolution is described by a generative model that is the analog of linear regression, which is fully characterized by baseline images and shapes (intercept) and initial momenta vectors (slope). Further, our framework adopts a control point parameterization of deformations, where the dimensionality of the deformation is determined by the complexity of anatomical changes in time rather than the sampling of the image and/or the geometric data. We derive a gradient descent algorithm which simultaneously estimates baseline images and shapes, location of control points, and momenta. Experiments on real medical data demonstrate that our framework effectively combines image and shape information, resulting in improved modeling of 4D (3D space + time) trajectories

    Geodesic regression of image and shape data for improved modeling of 4D trajectories

    Get PDF
    International audienceA variety of regression schemes have been proposed on im-ages or shapes, although available methods do not handle them jointly. In this paper, we present a framework for joint image and shape regression which incorporates images as well as anatomical shape information in a consistent manner. Evolution is described by a generative model that is the analog of linear regression, which is fully characterized by baseline images and shapes (intercept) and initial momenta vectors (slope). Further, our framework adopts a control point pa-rameterization of deformations, where the dimensionality of the deformation is determined by the complexity of anatom-ical changes in time rather than the sampling of the image and/or the geometric data. We derive a gradient descent al-gorithm which simultaneously estimates baseline images and shapes, location of control points, and momenta. Experi-ments on real medical data demonstrate that our framework effectively combines image and shape information, resulting in improved modeling of 4D (3D space + time) trajectories

    Estimation of smooth growth trajectories with controlled acceleration from time series shape data

    Get PDF
    pre-printLongitudinal shape analysis often relies on the estimation of a realistic continuous growth scenario from data sparsely distributed in time. In this paper, we propose a new type of growth model para-meterized by acceleration, whereas standard methods typically control the velocity. This mimics the behavior of biological tissue as a mechanical system driven by external forces. The growth trajectories are estimated as smooth flows of deformations, which are twice differentiable. This differs from piecewise geodesic regression, for which the velocity may be discontinuous. We evaluate our approach on a set of anatomical structures of the same subject, scanned 16 times between 4 and 8 years of age. We show our acceleration based method estimates smooth growth, demonstrating improved regularity compared to piecewise geodesic regression. Leave-several-out experiments show that our method is robust to missing observations, as well as being less sensitive to noise, and is therefore more likely to capture the underlying biological growth

    Doctor of Philosophy

    Get PDF
    dissertationStatistical analysis of time dependent imaging data is crucial for understanding normal anatomical development as well as disease progression. The most promising studies are of longitudinal design, where repeated observations are obtained from the same subjects. Analysis in this case is challenging due to the difficulty in modeling longitudinal changes, such as growth, and comparing changes across different populations. In any case, the study of anatomical change over time has the potential to further our understanding of many dynamic processes. What is needed are accurate computational models to capture, describe, and quantify anatomical change over time. Anatomical shape is encoded in a variety of representations, such as medical imaging data and derived geometric information extracted as points, curves, and/or surfaces. By considering various shape representations embedded into the same ambient space as a shape complex, either in 2D or 3D, we obtain a more comprehensive description of the anatomy than provided by an single isolated shape. In this dissertation, we develop spatiotemporal models of anatomical change designed to leverage multiple shape representations simultaneously. Rather than study directly the geometric changes to a shape itself, we instead consider how the ambient space deforms, which allows all embedded shapes to be included simultaneously in model estimation. Around this idea, we develop two complementary spatiotemporal models: a flexible nonparametric model designed to capture complex anatomical trajectories, and a generative model designed as a compact statistical representation of anatomical change. We present several ways spatiotemporal models can support the statistical analysis of scalar measurements, such as volume, extracted from shape. Finally, we cover the statistical analysis of higher dimensional shape features to take better advantage of the rich morphometric information provided by shape, as well as the trajectory of change captured by spatiotemporal models

    Predicting infant cortical surface development using a 4D varifold-based learning framework and local topography-based shape morphing

    Get PDF
    Longitudinal neuroimaging analysis methods have remarkably advanced our understanding of early postnatal brain development. However, learning predictive models to trace forth the evolution trajectories of both normal and abnormal cortical shapes remains broadly absent. To fill this critical gap, we pioneered the first prediction model for longitudinal developing cortical surfaces in infants using a spatiotemporal current-based learning framework solely from the baseline cortical surface. In this paper, we detail this prediction model and even further improve its performance by introducing two key variants. First, we use the varifold metric to overcome the limitations of the current metric for surface registration that was used in our preliminary study. We also extend the conventional varifold-based surface registration model for pairwise registration to a spatiotemporal surface regression model. Second, we propose a morphing process of the baseline surface using its topographic attributes such as normal direction and principal curvature sign. Specifically, our method learns from longitudinal data both the geometric (vertices positions) and dynamic (temporal evolution trajectories) features of the infant cortical surface, comprising a training stage and a prediction stage. In the training stage, we use the proposed varifold-based shape regression model to estimate geodesic cortical shape evolution trajectories for each training subject. We then build an empirical mean spatiotemporal surface atlas. In the prediction stage, given an infant, we select the best learnt features from training subjects to simultaneously predict the cortical surface shapes at all later timepoints, based on similarity metrics between this baseline surface and the learnt baseline population average surface atlas. We used a leave-one-out cross validation method to predict the inner cortical surface shape at 3, 6, 9 and 12 months of age from the baseline cortical surface shape at birth. Our method attained a higher prediction accuracy and better captured the spatiotemporal dynamic change of the highly folded cortical surface than the previous proposed prediction method

    Learning distributions of shape trajectories from longitudinal datasets: a hierarchical model on a manifold of diffeomorphisms

    Get PDF
    We propose a method to learn a distribution of shape trajectories from longitudinal data, i.e. the collection of individual objects repeatedly observed at multiple time-points. The method allows to compute an average spatiotemporal trajectory of shape changes at the group level, and the individual variations of this trajectory both in terms of geometry and time dynamics. First, we formulate a non-linear mixed-effects statistical model as the combination of a generic statistical model for manifold-valued longitudinal data, a deformation model defining shape trajectories via the action of a finite-dimensional set of diffeomorphisms with a manifold structure, and an efficient numerical scheme to compute parallel transport on this manifold. Second, we introduce a MCMC-SAEM algorithm with a specific approach to shape sampling, an adaptive scheme for proposal variances, and a log-likelihood tempering strategy to estimate our model. Third, we validate our algorithm on 2D simulated data, and then estimate a scenario of alteration of the shape of the hippocampus 3D brain structure during the course of Alzheimer's disease. The method shows for instance that hippocampal atrophy progresses more quickly in female subjects, and occurs earlier in APOE4 mutation carriers. We finally illustrate the potential of our method for classifying pathological trajectories versus normal ageing

    Deep Modeling of Growth Trajectories for Longitudinal Prediction of Missing Infant Cortical Surfaces

    Full text link
    Charting cortical growth trajectories is of paramount importance for understanding brain development. However, such analysis necessitates the collection of longitudinal data, which can be challenging due to subject dropouts and failed scans. In this paper, we will introduce a method for longitudinal prediction of cortical surfaces using a spatial graph convolutional neural network (GCNN), which extends conventional CNNs from Euclidean to curved manifolds. The proposed method is designed to model the cortical growth trajectories and jointly predict inner and outer cortical surfaces at multiple time points. Adopting a binary flag in loss calculation to deal with missing data, we fully utilize all available cortical surfaces for training our deep learning model, without requiring a complete collection of longitudinal data. Predicting the surfaces directly allows cortical attributes such as cortical thickness, curvature, and convexity to be computed for subsequent analysis. We will demonstrate with experimental results that our method is capable of capturing the nonlinearity of spatiotemporal cortical growth patterns and can predict cortical surfaces with improved accuracy.Comment: Accepted as oral presentation at IPMI 201

    Manifold Learning in Medical Imaging

    Get PDF
    Manifold learning theory has seen a surge of interest in the modeling of large and extensive datasets in medical imaging since they capture the essence of data in a way that fundamentally outperforms linear methodologies, the purpose of which is to essentially describe things that are flat. This problematic is particularly relevant with medical imaging data, where linear techniques are frequently unsuitable for capturing variations in anatomical structures. In many cases, there is enough structure in the data (CT, MRI, ultrasound) so a lower dimensional object can describe the degrees of freedom, such as in a manifold structure. Still, complex, multivariate distributions tend to demonstrate highly variable structural topologies that are impossible to capture with a single manifold learning algorithm. This chapter will present recent techniques developed in manifold theory for medical imaging analysis, to allow for statistical organ shape modeling, image segmentation and registration from the concept of navigation of manifolds, classification, as well as disease prediction models based on discriminant manifolds. We will present the theoretical basis of these works, with illustrative results on their applications from various organs and pathologies, including neurodegenerative diseases and spinal deformities
    corecore