538 research outputs found

    Intrinsic Reduced Attitude Formation with Ring Inter-Agent Graph

    Get PDF
    This paper investigates the reduced attitude formation control problem for a group of rigid-body agents using feedback based on relative attitude information. Under both undirected and directed cycle graph topologies, it is shown that reversing the sign of a classic consensus protocol yields asymptotical convergence to formations whose shape depends on the parity of the group size. Specifically, in the case of even parity the reduced attitudes converge asymptotically to a pair of antipodal points and distribute equidistantly on a great circle in the case of odd parity. Moreover, when the inter-agent graph is an undirected ring, the desired formation is shown to be achieved from almost all initial states

    Motion from "X" by Compensating "Y"

    Get PDF
    This paper analyzes the geometry of the visual motion estimation problem in relation to transformations of the input (images) that stabilize particular output functions such as the motion of a point, a line and a plane in the image. By casting the problem within the popular "epipolar geometry", we provide a common framework for including constraints such as point, line of plane fixation by just considering "slices" of the parameter manifold. The models we provide can be used for estimating motion from a batch using the preferred optimization techniques, or for defining dynamic filters that estimate motion from a causal sequence. We discuss methods for performing the necessary compensation by either controlling the support of the camera or by pre-processing the images. The compensation algorithms may be used also for recursively fitting a plane in 3-D both from point-features or directly from brightness. Conversely, they may be used for estimating motion relative to the plane independent of its parameters

    Non-iterative, fast SE(3) path smoothing

    Get PDF
    In this paper, we present a fast, non-iterative approach to smooth a noisy input on the Special Euclidean Group, SE(3) manifold. The translational part can be smoothed by a simple Gaussian convolution.We then proposed a novel approach to rotation smoothing. Unlike existing rotation smoothing methods using either iterative optimization methods or stochastic filtering methods, our method allows direct computation of the smoothing result and allows parallelization of the computation. Furthermore, we have done a comparative study on Jia and Evans’s method published in 2014 [1], and shown that our method can better smooth an input rotation sequence, with shorter computational time. The smoothed camera path is then used for video stabilisation, which shows fluid and smooth camera motion.Australian ARC Centre of Excellence for Robotic Vision (CE140100016

    On the Experiments about the Nonprehensile Reconfiguration of a Rolling Sphere on a Plate

    Get PDF
    A method to reconfigure in a nonprehensile way the pose (position and orientation) of a sphere rolling on a plate is proposed in this letter. The nonholonomic nature of the task is first solved at a planning level, where a geometric technique is employed to derive a Cartesian path to steer the sphere towards the arbitrarily desired pose. Then, an integral passivity-based control is designed to track the planned trajectory. The port-Hamiltonian formalism is employed to model the whole dynamics. Two approaches to move the plate are addressed in this paper, showing that only one of them allows the full controllability of the system. A humanoid-like robot is employed to bolster the proposed method experimentally
    • …
    corecore